PROGRAMA

Parte I. VARIACIÓN GENÉTICA

- Tema 1. Diversidad fenotípica y variación genética I Electroforesis de proteínas. Frecuencias alélicas. Polimorfismos alozímicos. Ventajas y limitaciones de los alozimas.
- Tema 2. Diversidad fenotípica y variación genética II Polimorfismos de los fragmentos de restricción. Variación nucleotídica. Variación visible. Aplicaciones de los polimorfismos genéticos.
- Tema 3. Organización de la variación genética I.

 Apareamiento aleatorio. Equilibrio Hardy-Weinberg.

 Acercamiento al equilibrio. Frecuencia de heterocigotos.
- Tema 4. Organización de la variación genética II Alelos múltiples. Genes ligados al X. Dos loci. Desequilibrio de ligamiento.
- Tema 5. Sistemas de apareamiento I

 Apareamiento clasificado positivo y negativo.

 Consanguinidad y frecuencias genotípicas. Coeficiente de consanguinidad.
- Tema 6. Sistemas de apareamiento II

 Consecuencias de la consanguinidad. Cálculo del

 coeficiente de consanguinidad a partir de árboles
 genealógicos. Sistemas regulares de endogamia.

PARTE II. CAUSAS DE LA EVOLUCIÓN

- Tema 7. Deriva genética
 Consecuencias del tamaño finito de población. Estructura
 poblacional. Aumento del índice de fijación por deriva.
 Censo efectivo. Divergencia genética entre
 subpoblaciones.
- Tema 8. Mutación
 Fuentes de variación. Cambios en las frecuencias alélicas
 por mutación. Número de alelos mantenidos en las
 poblaciones. Hipótesis neutralista.
- Tema 9. Migración Modelo de isla de migración. Mezcla poblacional y efecto Wahlund. Migración y divergencia genética. Estimas de la tasa de migración. Patrones de migración.
- Tema 10. Selección natural I

 Eficacia biológica absoluta y relativa. Selección en haploides. Selección en diploides: modelo general.

 Cambios de las frecuencias génicas por selección.

 Selección direccional. Equilibrio mutación-selección.

- Tema 11. Selección natural II
 Superioridad del heterocigoto y equilibrio selectivo.
 Selección con alelos múltiples. Concepto de topografía adaptativa. Cambios en la eficacia biológica media de la población. Teorema Fundamental de la Selección Natural.
- Tema 12. Selección natural III

 Selección variable entre fases del ciclo vital y entre sexos. Selección variable en el tiempo (entre generaciones). Selección variable en el espacio (selección en nichos múltiples). Selección dependiente de la frecuencia. Selección dependiente de la densidad.
- Tema 13. Selección natural IV
 Selección en dos loci: cambio de las frecuencias
 gaméticas. Epistasia y asociación gamética: modelo de
 fitness multiplicativa. Efecto del ligamiento sobre la
 dinámica de nuevos mutantes. Origen y evolución de las
 inversiones cromosómicas. Evolución de los supergenes.
- Tema 14. Selección natural III

 Superficie adaptativa y estructura de población. Teoría de los equilibrios fluctuantes de Wright y sus fases.

 Evolución del altruismo. Selección de grupo y selección de parentesco.

Parte III. GENÉTICA DE POBLACIONES MOLECULAR

- Tema 15. Teoría neutralista de la evolución molecular Principios teóricos de la teoría neutralista. Tasas de substitución de aminoácidos. Tasas de substitución de nucleótidos.
- Tema 16. Patrones de substitución nucleotídica y aminoacídica Substituciones sinónimas y no-sinónimas. Variación entre proteínas. Variación entre diferentes regiones dentro de un gen. Pseudogenes. Evolución del DNA de mitocondrias y cloroplastos.
- Tema 17. Evolución en las familias multigénicas

 Mecanismos de evolución concertada. Duplicación y
 divergencia en familias multigénicas. Superfamilias
 multigénicas.
- Tema 18. Elementos transponibles
 Factores que controlan la dinámica poblacional de los
 TE. Secuencias de inserción y transposones compuestos en
 bacterias. TE en eucariotas. Disgénesis híbrida en
 Drosophila. Retrovirus endógenos en mamíferos.

BIBLIOGRAFÍA BÁSICA

Hartl, D. H. 1988. A Primer of Population Genetics. 2nd ed. Sinauer.

BIBLIOGRAFÍA ADICIONAL

- Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. Longman.
- Hartl, D. H. and Clark, A. G. 1989. Principles of Population Genetics. 2nd ed. Sinauer.
- Hedrick, P. W. 1985. Genetics of Populations. Jones & Bartlett.