Presentació i Objectius de l’assignatura

Aquesta és la única assignatura de teoria de nombres de la llicenciatura. Per tant, té com a objectiu ser un introducció als problemes aritmètics i, a la vegada, oferir una visió dels mètodes que intervenen en l’anàlisi i resolució d’aquests problemes. Donat que hi ha massa tipus de problemes en teoria de nombres com per a ser coberts en un curs d’aquestes característiques, el curs es basa principalment en els problemes diofantíacs, i s’introduceixen a partir d’aquests la teoria algebraica de nombres en el sentit clàssic i els nombres p-àdics.

El curs es divideix en tres parts bastant diferenciades: restes quadràtiques, cossos de nombres i cossos p-àdics. El nexexe que els uneix és la resolució d’equacions diofantíaciques. Per exemple, un dels objectius del curs serà anar resolent certs casos especials de l’equació de Bachet-Mordell $y^2 = x^3 + k$.

Coneixements matemàtics previs

Els prerequisits del curs són les assignatures obligatòries d’àlgebra de la llicenciatura de matemàtiques, principalment els continguts de les assignatures Àlgebra III i Teoria de Galois.

Programa

1. Introducció a la teoria de nombres
 (a) Que és la teoria de nombres?
 (b) Molt breu historia de la teoria de nombres.
 (c) Alguns resultats elementals: Ternes pitagòriques.
 (d) Equacions diofantíaciques.
2. Teoria de congruències.

(a) Repàs de resultats bàsics: cossos finits, teorema dels restes.
(b) Resolució d’equacions mòdul n.
(c) Solucions mòdul p^r versus solucions mòdul p
(d) Restes quadràtics mòdul p: símbol de Legendre.
(e) La llei de reciprocitat quadràtica.
(f) Algunes aplicacions bàsiques.
(g) El teorema de Chevalley-Waring.

3. Cossos de nombres

(a) Per a que volem estudiar les extensions finites de \mathbb{Q}?
(b) Elements algebraics sobre un anell.
(c) Discriminant, norma i traça.
(d) Factorització d’elements en cossos de nombres.
(e) Ideals primers. Teorema de factorització única.
(f) Ideals fraccionaris. Grup de classes d’ideals.
(g) Mètodes geomètrics: el Teorema de Minkowsky.
(h) Primeres aplicacions.
(i) El teorema de finitud del grup de classes d’ideals.
(j) Com convertir un ideal en principal?
(k) El teorema de les unitats de Dirichlet.

4. Cossos p-àdics

(a) Construcció dels p-àdics com a series en p.
(b) Valoració p-àdica.
(c) Completació p-àdica i construcció de \mathbb{Q}_p.
(d) Enters p-àdics.
(e) Resolució d’equacions en els p-àdics.
(f) El lema de Hensel.
(g) Arrels de la unitat a \mathbb{Q}_p.
(h) Valoracions en cossos de nombres.
(i) El teorema de Ostrowski.
(j) El principi de Hasse.
Bibliografia

Bibliografia bàsica

P. Samuel. Teoría algebraica de los números. Ediciones Omega, 1972

Bibliografia complementària

J. Neukirch. Algebraic number theory. Springer-Verlag 1999

Professors

Teoria: Xavier Xarles. Problemes: Enrique Gonzalez

Avaluació

Durant el curs s’hauran d’entregar algun problema que contara fins a un 15 de la nota final. El reste de la nota s’obtindrà d’un examen final amb una part de teoria més problemes semblants als fets durant el curs.