

Linear Networks**2013/2014**Code: 42851
ECTS Credits: 6

Degree	Type	Year	Semester
4313797 Enginyeria de Telecomunicacions / Telecommunication Engineering	OB	1	1

Contact

Name: Eden Corrales Lopez

Email: Eden.Corrales@uab.cat

Use of languages

Principal working language: anglès (eng)

Prerequisites

A background in microwave engineering is recommended.

Objectives and ContextualisationObjectives

The aim of this module is to provide the ability to design components for communications, with particular emphasis on synthesis of linear components, from the mathematical definition of the response to a circuital network, lumped element based, which has the desired response. Different technologies connected to the network synthesis approach will be analyzed. Examples and exercises will be implemented for better understanding of the content.

Skills

Enginyeria de Telecomunicacions / Telecommunication Engineering

- Capacity for working in interdisciplinary teams
- Capacity to design communications components such as routers, commutators, concentrators, emitters and receivers in different bandwidths.
- Student should possess the learning skills that enable them to continue studying in a way that is largely student led or independent
- Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study
- Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously

Learning outcomes

1. Capacity for working in interdisciplinary teams
2. Choice of the most appropriate technology for subsequent design in terms of performance and band frequency.
3. Design linear devices at different bandwidth frequencies
4. Student should possess the learning skills that enable them to continue studying in a way that is largely student led or independent
5. Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study

6. Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously
7. Synthesis devices with linear responses at different bandwidth frequencies

Content

Content

- Introduction.
- Analysis of multi-port networks. Parameter definitions.
- Mathematical synthesis of the transfer function.
- Network synthesis - Circuit approach.
- Coupling matrix synthesis.
- Reconfiguration techniques.
- Technology and design techniques.

Methodology

Methodology

THEORY CLASSES: Participatory classes by means of blackboard and/or slides.

LAB AND EXERCISES: Lab and exercise classes in theory classroom and computer equipped classroom.

AUTONOMOUS WORK: Making notes. Activities. Study.

TUTORIALS: Individual tutorials.

Activities

Title	Hours	ECTS	Learning outcomes
Type: Directed			
Exercises	12	0.48	1, 5, 6
Lab	12	0.48	1, 5, 6
Theory classes	26	1.04	2, 3, 7
Type: Supervised			
Tutorials	3	0.12	4, 5, 6
Type: Autonomous			
Lab and exercises preparation	23	0.92	2, 3, 5, 6, 7
Study	60	2.4	2, 3, 4, 5, 7

Evaluation

Evaluation

Lab

Student's ability to solve practical problems will be assessed taking into account submitted reports, autonomy in problems resolution during lab sessions, ability to work as a team with other students and diligence.

Exercises

Exercises solved by the student during classes will be evaluated. Teamwork will be assessed in exercises solved within a student group. Exercises will be evaluated along the course assessing the acquired abilities.

Test

A final test will be done at the end of the term including the contents of the subject.

Final grade = Lab*0.3 + Exercises*0.4 + Test*0.3

Evaluation activities

Title	Weighting	Hours	ECTS	Learning outcomes
Exercises	60%	2	0.08	2, 3, 4, 5, 6, 7
Lab	40%	10	0.4	1, 2, 3, 4, 5, 6, 7
Test	30%	2	0.08	2, 3, 7

Bibliography

J. S. Hong, Microstrip Filters for RF/Microwave Applications, 2nd ed., Wiley, 2011.

R. J. Cameron, C. M. Kudsia and R. R. Mansour, Microwave filters for communication systems: fundamentals, design, and applications. Wiley, 2007.

R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill, 1966.

D. M. Pozar, Microwave Engineering, Wiley, 2009.