Deterministic Modelling

2014/2015

Code: 43479 ECTS Credits: 6

Degree	Туре	Year	Semester
4313136 Modelització per a la Ciència i l'Enginyeria / Modelling for Science and Engineering	ОТ	0	1

Contact

Use of languages

Name: Juan Camacho Castro
Email: Juan.Camacho@uab.cat

Principal working language: anglès (eng)
Some groups entirely in English: No
Some groups entirely in Catalan: Yes
Some groups entirely in Spanish: No

Teachers

Silvia Cuadrado Gavilán

Prerequisites

There are no specific prerequisites

Objectives and Contextualisation

The course aims to develop the students' ability to systematically analyze deterministic nonlinear dynamical models and to elaborate mathematical models of physical systems.

Skills

- Analyse complex systems in different fields and determine the basic structures and parameters of their workings.
- Analyse, synthesise, organise and plan projects in the field of study.
- Apply logical/mathematical thinking: the analytic process that involves moving from general principles to particular cases, and the synthetic process that derives a general rule from different examples.
- Apply techniques for solving mathematical models and their real implementation problems.
- Conceive and design efficient solutions, applying computational techniques in order to solve mathematical models of complex systems.
- Continue the learning process, to a large extent autonomously.
- Formulate, analyse and validate mathematical models of practical problems in different fields.
- Isolate the main difficulty in a complex problem from other, less important issues.
- Solve complex problems by applying the knowledge acquired to areas that are different to the original ones.
- Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
- Use appropriate numerical methods to solve specific problems.

Learning outcomes

1. Analyse, synthesise, organise and plan projects in the field of study.

- 2. Apply logical/mathematical thinking: the analytic process that involves moving from general principles to particular cases, and the synthetic process that derives a general rule from different examples.
- 3. Choose the best description of a system on the basis of its particular characteristics
- 4. Construct and resolve models to describe the behaviour of a real system.
- 5. Continue the learning process, to a large extent autonomously.
- 6. Isolate the main difficulty in a complex problem from other, less important issues.
- 7. Solve and simulate models on the basis of numerical calculation methods and Monte Carlo methods.
- 8. Solve complex problems by applying the knowledge acquired to areas that are different to the original ones.
- 9. Solve mathematical models by using analytic and numerical methods
- 10. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
- 11. Use numerical calculation methods to solve complex problems.

Content

1 .- Introduction to dynamical Systems

Introduction.- Characteristic properties of nonlinear dynamical systems.- Examples of nonlinear dynamical behaviors.- Classification of dynamical systems.- Dynamical systems according to their dynamics.

2 .- Discrete dynamical systems.

Maps.- Logistic map.- Fixed points. Stability.- Universality.

3 .- Dynamical systems in one dimension.

Graphical Solution. Fixed-Points.- Analytical solution. Linear stability.- Numerical Solution.- Bifurcations.- Flows on the circle.- Synchronization of fireflies.

4 .- Dynamical Systems in 2 dimensions. Oscillations.

Introduction. Dynamic Behaviors in 2 dimensions.- Linear stability.- Population dynamics.- Bifurcations.- Oscillations. Biological Rhythms.

5 .- Dynamical Systems in 3 dimensions. Chaos.

Deterministic Chaos.- Lorenz Equations.- Rossler system.- Applications.- Chaos descriptors.- Epidemics.

6 .- Self-organization.

Morphogenesis.- Turing structures .- Nonlinear waves.

7.- First order partial differential equations

Definitions.- Transport equation.- Travelling waves. Characteristics method.- Application to structured population dynamics.- Conservation laws.- Weak solutions and shock waves.- Burgers equation.- Traffic equation.

Methodology

The methodology is based on master classes which include some practical exercises. Most of the exercises will be solved and delivered weekly by the students. After that, any doubt about them will be discussed in class. Students will also present some projects in class.

Activities

Title	Hours	ECTS	Learning outcomes
Type: Directed			
Theory	30	1.2	1, 2, 4, 5, 7, 9, 3, 10, 11
Type: Supervised			

Deterministic Modelling 2014 - 2015

Practical problems and projects	40	1.6	1, 2, 4, 6, 5, 7, 9, 8, 3, 11	
Type: Autonomous				
Autonomous study	80	3.2	1, 2, 6, 5, 7, 9, 10, 11	

Evaluation

The grades will be obtained from delivering solved problems, simulations, reports and presentations. There may be a written exam.

Evaluation activities

Title	Weighting	Hours	ECTS	Learning outcomes
Projects	30%	0	0	1, 2, 4, 6, 5, 7, 9, 8, 3, 10, 11
Solved exercises	70%	0	0	2, 4, 6, 5, 7, 9, 8, 3, 11

Bibliography

- S.H. Strogatz. Nonlinear Dynamics and Chaos. Perseus Books, Addisson-Wesley, Reading, 1994.
- R.V. Solé y S.C. Manrubia, Orden y caos en sistemas complejos, ediciones UPC, Barcelona, 2001.
- S.H. Strogatz. SYNC. Rythms of nature, rythms of ourselves, Penguin, 2003.
- B.C. Goodwin, How the Leopard Changed Its Spots: Evolution of Complexity. Prentice Hall, 1994.
- I. Peral, Primer Curso de EDPs, Addison-Wesley/UAM, 1995.
- R. Haberman. Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow. 1998.
- W. A. Strauss, Partial Differential Equations: An Introduction, John Wiley & Sons, 1992.