General Relativity and Cosmology

2015/2016

Code: 103946 ECTS Credits: 6

Degree	Туре	Year	Semester
2500097 Physics	ОТ	4	0

Contact

Use of languages

Name: Oriol Pujolas Boix Principal working language: english (eng)

Email: Oriol.Pujolas@uab.cat

Prerequisites

It is advisable to have taken Mecànica Teòrica i Sistemes no lineals, and Electrodinàmica i Radiació Sincrotró.

Objectives and Contextualisation

To learn the physical basis of General Relativity (GR) as well as the most important gravitational phenomena that are described with it. This goal requires mastering tensorial calculus. The classical tests of GR and the familiarization with the most important spacetimes are also included as part of the course.

Skills

- Apply fundamental principles to the qualitative and quantitative study of various specific areas in physics
- Be familiar with the bases of certain advanced topics, including current developments on the parameters of physics that one could subsequently develop more fully
- Carry out academic work independently using bibliography (especially in English), databases and through collaboration with other professionals
- Communicate complex information in an effective, clear and concise manner, either orally, in writing or through ICTs, and before both specialist and general publics
- Develop critical thinking and reasoning and know how to communicate effectively both in the first language(s) and others
- Develop independent learning strategies
- Formulate and address physical problems identifying the most relevant principles and using approximations, if necessary, to reach a solution that must be presented, specifying assumptions and approximations
- Generate innovative and competitive proposals for research and professional activities.
- Respect the diversity and plurality of ideas, people and situations
- Use critical reasoning, show analytical skills, correctly use technical language and develop logical arguments
- Use mathematics to describe the physical world, selecting appropriate tools, building appropriate models, interpreting and comparing results critically with experimentation and observation
- Using appropriate methods, plan and carry out a study or theoretical research and interpret and present the results
- Work independently, have personal initiative and self-organisational skills in achieving results, in planning and in executing a project
- Working in groups, assume shared responsibilities and interact professionally and constructively with others, showing absolute respect for their rights.

Learning outcomes

- 1. Calculate curvature tensor.
- 2. Calculate particle trajectories in gravitational fields solving the geodesic equation.
- 3. Calculate the effect of red shift and the deflection of light produced by a gravitational field.
- 4. Calculate the geodesics in a curved space.
- 5. Calculate the simple-distribution energy-momentum tensor for matter.
- 6. Carry out academic work independently using bibliography (especially in English), databases and through collaboration with other professionals
- 7. Communicate complex information in an effective, clear and concise manner, either orally, in writing or through ICTs, in front of both specialist and general publics.
- 8. Describe experimental evidence for the existence of gravitational waves.
- 9. Describe experimental evidence in favor of general relativity and the principle of equivalence in terrestrial and astrophysical observations.
- 10. Describe gravitational waves and their characteristic properties.
- 11. Describe observational evidence in favour of big bang cosmology.
- 12. Describe the basic concepts of current knowledge regarding the structure and evolution of the universe.
- 13. Describe the characteristics of the gravitational field generated by stars and black holes in addition to the effects they produce.
- 14. Develop critical thinking and reasoning and communicate ideas effectively, both in the mother tongue and in other languages.
- 15. Develop independent learning strategies.
- 16. Establish the bases for describing the evaporation and thermodynamics of black holes.
- 17. Generate innovative and competitive proposals for research and professional activities.
- 18. Obtain physical magnitudes measured by different observers from pseudo-Riemannian metrics.
- 19. Obtain the Newtonian limit of Einsteins equations with weak non-relativistic sources.
- 20. Obtain tidal forces from the curvature tensor.
- 21. Relate general relativity and electromagnetism establishing their similarities and differences.
- 22. Respect diversity in ideas, people and situations.
- 23. Use covariant equations and tensor calculus.
- 24. Use critical reasoning, show analytical skills, correctly use technical language and develop logical arguments
- 25. Use differential geometry to implement the principle of equivalence.
- 26. Use Einsteins equations in a linearized manner so as to describe weak gravitational fields, including the generation, propagation and detection of gravitational waves.
- 27. Use space-time symmetries for solving problems of dynamics and relativistic kinematics.
- 28. Use the approach of homogeneity and isotropy to describe the structure and evolution of the universe on a large scale.
- 29. Use the approximation of spherical symmetry in the study of stars and black holes.
- 30. Work independently, take initiative itself, be able to organize to achieve results and to plan and execute a project.
- 31. Working in groups, assume shared responsibilities and interact professionally and constructively with others, showing absolute respect for their rights.

Content

Special Relativity

Differential Geometry

The Equivalence Principle

Spherical symmetry

Weak fields

Cosmology

Methodology

This course will be given entirely in english. All the course material (problems, homework and exams) will be distributed in english and students will be encouraged to do all the exercises/exams in english, although in catalan or spanish will also be accepted and assessed with the same criteria.

This course will consist of theory and problem classes. Problem lists will be given to be solved individually or in groups. The solutions to the problems will be discussed in the problem classes.

The students will solve individually and hand in after a limited time a selection of 'homework' problems that will count for the final course mark.

The students will have to prepare 2 written exams: a mid-term exam and a final exam, the latter of which can be re-taken once.

Activities

Title	Hours	ECTS	Learning outcomes
Type: Directed			
Problem lectures and discussion	15	0.6	1, 5, 3, 4, 2, 7, 12, 13, 10, 15, 14, 16, 6, 17, 19, 20, 18, 24, 21, 30, 31, 23, 25, 29, 28, 26, 27
Theory lectures	30	1.2	1, 5, 3, 4, 2, 7, 12, 13, 10, 8, 9, 11, 14, 16, 19, 20, 18, 24, 21, 23, 25, 29, 28, 26, 27
Type: Autonomous			
Discussion and team work	50	2	1, 5, 3, 4, 2, 7, 12, 13, 10, 8, 9, 11, 15, 14, 17, 19, 20, 18, 24, 21, 22, 31, 23, 25, 29, 28, 26, 27
Study of theory	44	1.76	1, 5, 3, 4, 2, 7, 12, 13, 10, 8, 9, 11, 15, 14, 16, 6, 17, 19, 20, 18, 24, 21, 30, 23, 25, 29, 28, 26, 27

Evaluation

The evaluation of this course has two blocks:

- two written exams (for theory and problems) that count 20% and 60% of the mark respectively. The second exam can be re-taken once.
- homework problems given during the course, that count 20% of the mark.

In addition,

- in order to have a final mark, the final exam mark (for the 60% of the mark) must be 3 over 10 or higher
- students that give in material for 35% or less of the final mark will be marked as "Not Presented"
- the exams and homework problems to be handed in are going to be distributed in english and can be answered in catalal, spanish or english and will be assessed with equal criteria independently of the language.

Evaluation activities

|--|

General Relativity and Cosmology 2015 - 2016

Final exam	60%	3	0.12	1, 5, 3, 4, 2, 7, 12, 13, 10, 8, 9, 11, 15, 14, 16, 17, 19, 20, 18, 24, 21, 30, 23, 25, 29, 28, 26, 27
Homework problems	20%	2	0.08	1, 5, 3, 4, 2, 7, 15, 14, 16, 6, 17, 19, 20, 18, 24, 21, 30, 23, 25, 29, 28, 26, 27
Mid-term exam	20%	3	0.12	1, 5, 3, 4, 2, 7, 12, 13, 10, 8, 9, 11, 15, 14, 16, 17, 19, 20, 18, 24, 21, 30, 23, 25, 29, 28, 26, 27
Re-take final exam	60%	3	0.12	1, 5, 3, 4, 2, 7, 12, 13, 10, 8, 9, 11, 15, 14, 16, 17, 19, 20, 18, 24, 21, 30, 23, 25, 29, 28, 26, 27

Bibliography

- B.F. Schutz, A First Course in General Relativity, Cambridge Univ Press, 2009.
- J.B. Hartle, Gravity: an introduction to Einstein's General Relativity, Addison-Wesley, 2003.
- R.J.A. Lambourne, Relativity, gravitation and cosmology, Cambridge Univ Press, 2010.
- S.M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison-Wesley Longman, 2004.
- S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, J. Wiley & Sons, 1972.