Waste Management

2015/2016

Code: 42408 ECTS Credits: 6

Degree	Туре	Year	Semester
4313784 Interdisciplinary Studies in Environmental, Economic and Social Sustainability	ОТ	0	1

Contact

Use of languages

Name: Xavier Gabarrell Durany

Principal working language: english (eng)

Email: Xavier.Gabarrell@uab.cat

Teachers

Montserrat Sarra Adroguer

Teresa Gea Leiva

Prerequisites

No specific knowledge required.

Objectives and Contextualisation

Provide the knowledge needed to manage waste as a resource, energy saving and reduction of greenhouse gas emissions (GHG).

Skills

- Analyse, summarise, organise and plan projects related to the environmental improvement of product, processes and services
- Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Work in an international, multidisciplinary context.

Learning outcomes

- 1. Choose and propose the most sustainable waste management system under current legislation and the objectives of international policies.
- 2. Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
- 3. Estimate greenhouse gas emissions attributable to waste.
- 4. Estimate the main environmental impacts of waste management systems, whether urban, industrial or agricultural.
- 5. Quantify the chances of reducing environmental impacts and GHG on the basis of new technologies, methodologies and waste management systems.
- 6. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.

7. Work in an international, multidisciplinary context.

Content

Block 1 Unit operations for the use of waste as raw materials and emissions of greenhouse gases (GHG).

- Reduction. Collection. Transport. Compaction. Valoration. Sorting.
- Recyclable materials: plastic, glass, paper and cardboard, cans, batteries and accumulators. Organic matter. Other recyclable materials.
- Recycling plants. Eco-parks and Recovery areas.
- Landfills and estimation of their emissions.

Block 2 Indicators.

- GHG quantification methodologies for the waste sector (IPCC, LCA ...)
- Waste classification. Definition of a management plan.
- Emissions generated and/or reduced due to waste management that affects other sectors: transport, industry, energy. CO2 credits
- Saving energy and material recycling and recovery of materials and energy.
- Software modeling and measurement: LCA study, CO2 equivalent calculator, Landgem

Block 3 Sustainable management of urban, agricultural and industrial waste

• Applying Industrial Ecology tools (industrial symbiosis, flows exchanging, MFA, LCA Exegetic Analysis, Ecodesign, carbon footprint,) for designing innovative and sustainable system for waste management.

Methodology

Lectures/oral expositions

Classroom practices

Seminars

Preparation of reports

Autonomous activity

Reading reports/papers of interest

Activities

Title	Hours	ECTS	Learning outcomes
Type: Directed			
Lectures	36	1.44	
Type: Supervised			

Seminars/Oral Expositions	10	0.4	
Visit to industrial plants	15	0.6	
Type: Autonomous			
Preparation of reports	25	1	
Reading of reports/papers	20	0.8	
Self-study	30	1.2	
<u> </u>			

Evaluation

Students must submit essays or reports which will be prepared as a group or individually. Some works can be presented / discussed in class (50%). Written exam (50%).

The minimum mark required for each item is 40% for obtaining the final mark.

Evaluation activities

Title	Weighting	Hours	ECTS	Learning outcomes
Delivered reports	40 %	10	0.4	1, 4, 6
Exams	50 %	2	0.08	1, 4, 3, 5
Oral expositions of the reports	10 %	2	0.08	2, 7

Bibliography

- Materiales del campus virtual de la UAB. (intranet UAB, campus virtual)
- Handbook Zero Waste, ZERO WASTE PROJECT (1G-MED08-533).
 http://icta.uab.cat/ecotech/zero_waste/Handbook/Final_Handbook.pdf
- MECOSIND. (intranet UAB, campus virtual)
- Cara Brower; Rachel Mallory; Zachary Ohlman. 2005. Experimental Eco>Design. Suiza. Editorial Rotovision. ISBN 2-88046-817
- Han Brezet, Carolien Van Hemel. 1997. Ecodesign. A promising approach to sustainable production and consumption. United Nations Publications, Paris Henrik Wenzel; Michael Hauschild; Leo Alting.1997. Environmental Assessment of Products (vol.1). Methodology, tools and case studies in product development. Chapman & Hall
- Bilitewski, B., Härdtle, G., Marek, K., Weissbach, A., Boeddicker, H. Waste management. 1997.
 Springer (Germany).
- Lund, H. F., Manual McGraw-Hill de reciclaje. McGraw-Hill/Interamericana de España. 1996. (Madrid).
- Landreth, R. E., Rebers, P. A. Municipal Solid Wastes. Problems and Solutions.CRC Press, Inc., 1997. (USA)
- Solid waste processing and resource recovery. Handbook of environmental engineering. Vol 2.
 Lawrence K. Wang i Norman C. Pereira. Clifton (1980).
- Perry's Chemical engineer's handkook. (section 26-31).
- Roger Tim Haug. Compost engineering. Principles and practice. Technomic Publishing C.Inc. 1980. (Lancaster).
- Tchobanoglous, G., Theisen, H., Vigil, S. Gestión integral de residuos sólidos. McGraw-Hill. Madrid (1994).
- ISO 14040 Environmental management Life cycle assessment Principles and framework 1998

- ISO 14041: Environmental management Life cycle assessment Goal and scope definition and life cycle inventory analysis 1998
- ISO 14042: Environmental management Life cycle assessment Life cycle impact assessment -2000
- ISO 14043: Environmental management Life cycle assessment Life cycle interpretation 2000
- ISO 14048. Environmental Management-life cycle assessment-data documentation format; 2001.
- The Eco-indicator 99. A damage oriented method for Life Cycle Impact Assessment Methodology Report, PRé Consultants, Amersfoort The Netherlands, 2000
- SimaPro 4.0 Database PRé Consultants B.V., Amersfoort (The Netherlands)

WEBs

CARBON FOOTPRINT TOOL OF WASTE MANAGEMENT IN EUROPE

http://co2zw.eu.sostenipra.cat/

Sustainable Design de la University of Surrey. www.cfsd.org.uk

Compra verdewww.uab.cat/compraverda

O2 www.o2.org

Center for Design de la RMIT University (Austràlia)

www.cfd.rmit.edu.au

Centre de Recursos Barcelona Sostenible

www.bcn.es/agenda21/crbs/

Agence de l'Environnement et de la Maitrise de l'Energie francesa. Productos reciclados

www.produits-recycles.com/

The EcoDesing Fundation (Sidney, Austràlia)

www.edf.edu.au/

Guia de ecodiseño UNEP

design.ntnu.no/fag/ecodesign/theory/theory_frames.htm

Grupo sostenibilidad y prevención ambiental. SOSTENIPRA

www.sostenipra.cat