Integrated Circuits and Systems for Communications 2016/2017

Code: 42835
ECTS Credits: 6

<table>
<thead>
<tr>
<th>Degree</th>
<th>Type</th>
<th>Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4313797 Telecommunications Engineering</td>
<td>OB</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Contact

Name: Núria Barniol Beumala
Email: Nuria.Barniol@uab.cat

Teachers

Jorge Sacristán Riquelme
Maria Aránzazu Uranga del Monte

Use of languages

Principal working language: english (eng)

Prerequisites

Recommendations: basic knowledge on electronic devices, theory and analysis of electrical circuits, microelectronics technology

Objectives and Contextualisation

Provide the concepts, techniques and tools for the design and implementation of integrated systems specially those applied to the area of radiofrequency communication. The studies will cover future trends of these integrated systems in terms of design and technological predictions.

Skills

- Capacity for critical reasoning and thought as means for originality in the generation, development and/or application of ideas in a research or professional context.
- Capacity for designing and manufacturing integrated circuits.
- Capacity for working in interdisciplinary teams.
- Capacity to design communications components such as routers, commuters, concentrators, emitters and receivers in different bandwidths.
- Capacity to integrate new technologies and systems developed within telecommunications engineering in general and in broader, multidisciplinary contexts such as bioengineering, photovoltaic conversion, nanotechnology, telemedicine.
- Possess and understand knowledge that provides a basis or opportunity for originality in the development and/or application of ideas, often in a research context.
- Student should possess the learning skills that enable them to continue studying in a way that is largely student led or independent.
- Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study.

Learning outcomes

1
1. Analyse the function of integrated circuits for RF from the dimensions of their components
2. Capacity for critical reasoning and thought as means for originality in the generation, development and/or application of ideas in a research or professional context.
3. Capacity for working in interdisciplinary teams
4. Define the electrical characteristics of integrated RF systems according to their application
5. Possess and understand knowledge that provides a basis or opportunity for originality in the development and/or application of ideas, often in a research context
6. Propose alternative circuits to improve the performance of the integrated circuits designed
7. Propose specific architectures for integrated RF systems.
8. Recognize the possibilities of integration according to the characteristics of the communication system to perform
9. Student should possess the learning skills that enable them to continue studying in a way that is largely student led or independent
10. Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study
11. Use standard tools effectively for integrated circuit design

Content
1. Design and analysis of the basic building blocks in CMOS integrated systems for analog applications
2.-Design of integrated circuits for radiofrequency communication systems. Basic concepts and circuits
3. Limits and trends of the radiofrequency integrated circuits and systems

Methodology
Theory: Oral exposition of the fundamentals concepts. Concepts will be partially introduced as specific-cases.

Exercises: Resolution and discussion in relation with the proposed problems and exercises.

Laboratory: Hands-on specific design tools for integrated circuit design and simulation.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>15</td>
<td>0.6</td>
<td>1, 2, 4, 5, 6, 9, 10, 11</td>
</tr>
<tr>
<td>Problems</td>
<td>15</td>
<td>0.6</td>
<td>1, 2, 4, 5, 6, 10, 11</td>
</tr>
<tr>
<td>Theory</td>
<td>15</td>
<td>0.6</td>
<td>1, 2, 4, 6, 10, 11</td>
</tr>
</tbody>
</table>

Type: Autonomous

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of reports and oral expositions</td>
<td>30</td>
<td>1.2</td>
<td>1, 2, 4, 6, 10, 11</td>
</tr>
<tr>
<td>Problems solving</td>
<td>25</td>
<td>1</td>
<td>1, 2, 4, 6, 10, 11</td>
</tr>
<tr>
<td>Study to assimilate concepts</td>
<td>30</td>
<td>1.2</td>
<td>1, 2, 4, 5, 6, 9, 10</td>
</tr>
</tbody>
</table>

Evaluation
There will be 2 written exams along the semester. Additionally there will be 2 additional homeworks which will be evaluated as oral expositions or in a written format related with the design and analysis of a specific integrated circuit. The evaluation will be completed with the written report of the practical work towards the design of an integrated circuit made by the students in the laboratory. There will be a final exam for improving final qualification. All the marks should be higher than 4 to be averaged.

The qualification "Not evaluated" will be only granted if the student does not participate in any evaluation activities (lab sessions, oral exposition, exams)

**Evaluation activities**

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>40%</td>
<td>6</td>
<td>0.24</td>
<td>1, 2, 4, 6, 7, 10</td>
</tr>
<tr>
<td>Report and oral exposition on practical work</td>
<td>30%</td>
<td>6</td>
<td>0.24</td>
<td>1, 2, 3, 5, 9, 10, 11</td>
</tr>
<tr>
<td>Specific written and oral presentations</td>
<td>30%</td>
<td>8</td>
<td>0.32</td>
<td>2, 3, 5, 7, 8, 9, 10</td>
</tr>
</tbody>
</table>

**Bibliography**

**CMOS analog circuit design.** Allen, Holberg, Oxford University Press, 2002.


**Radio frequency integrated circuit design.** Rogers, John W. M. Boston : Artech House, 2010 2nd ed.

**Analysis and design of analog integrated circuits.** Paul R. Gray... [et al.] New York [etc.] : John Wiley, cop. 2010

**LNA-ESD co-design for fully integrated CMOS wireless receivers.** Leroux, Paul. Springer, 2005

**Millimeter-wave integrated circuits.** Eoin Carey, Springer, cop. 2005


**CMOS circuit design, layout and simulation.** Baker, Li and Boyce. Ed. IEEE Press

**Microelectronics Circuits,** Sedra and Smith, Oxford University Press, 2010