Integration of Wireless Sensor Networks: Hardware Solutions 2016/2017

Code: 42840
ECTS Credits: 6

Degree

<table>
<thead>
<tr>
<th>Type</th>
<th>Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Contact

Name: Carles Ferrer Ramis
Email: Carles.Ferrer@uab.cat

Teachers

Joan Oliver Malagelada
Màrius Montón Macián

Prerequisites

None, though it is recommended to have made the subject of first course.

Objectives and Contextualisation

The aim of this module is to provide knowledge for the development of sensor network nodes that allow both the implementation of the communication protocols of the network of sensors, such as sensors and actuators connected to the node. From the Internet-of-Things applications and design methodologies, the hardware platforms development aspects are reinforced.

Skills

- Be capable of using programmable logic as well as designing advanced electronic systems, both analogue and digital.
- Capacity for critical reasoning and thought as means for originality in the generation, development and/or application of ideas in a research or professional context.
- Capacity for developing electronic instrumentation as well as transducers, actuators and sensors.
- Capacity for working in interdisciplinary teams
- Knowledge of the hardware description languages for highly complex circuits
- Maintain proactive and dynamic activity for continual improvement
- Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study
- Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously

Learning outcomes

1. Capacity for critical reasoning and thought as means for originality in the generation, development and/or application of ideas in a research or professional context.
2. Capacity for working in interdisciplinary teams
3. Design integrated circuits using hardware description languages through ASICs and/or FPGAs
4. Integration of sensors and actuators with programmable circuits for implementing sensor network
 nodes.
5. Maintain proactive and dynamic activity for continual improvement
6. Students should know how to apply the knowledge they have acquired and their capacity for problem
 solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of
 study
7. Students should know how to communicate their conclusions, knowledge and final reasoning that they
 hold in front of specialist and non-specialist audiences clearly and unambiguously
8. Use programmable digital logic devices in communications applications

Content
1. Introduction to IoT

 Internet of things (IoT), IoT characteristics, IoT layered architecture, Applications and Scenarios of Relevance,
 Application Areas, Smart Applications.
2. Electromobility
 ICE, HEV and EV. Battery Management Systems, Wireless communications, Electronic Control Units.
3. Smart Industry
 Smart Factory, Industrial Robots, Autonomous Mobile Robots, Hw platforms for control autonomous systems.
4. Smart buildings
5. Security for WSN
 SW and HW architecture, Secure Features for WSNs, Authentification and Key Management by FPGA.

Methodology

Theory lectures:
Exhibitions on the board of the theoretical part of the syllabus for the course. Give basic knowledge of course
and instructions on how to complete and deepen the content.

Seminars problems:
It works exhibited scientific and technical knowledge in lectures. They solve problems and discuss case
studies. Problems with promoting the capacity for analysis and synthesis, critical reasoning, and
trains students in problem solving.

The methodology problems is: deliver complete exercises to be solved. In class A review of the doubts that
have arisen are resolved and those students have conflicts. In some problems working session group for
solving synthetic material.

Practices:
Practices are held during the year and serve to deepen the practical knowledge matter. Students will work in
groups of two. In practice, students will develop habits of thought from the course and work group.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory lectures</td>
<td>21</td>
<td>0.84</td>
<td>1, 3, 4, 8</td>
</tr>
</tbody>
</table>

Type: Directed

Type: Supervised
Evaluation

The evaluation of the course is broken down into the following items:

1. Evidence of continuous assessment (theory and seminar lectures). The total weight of this subject is 50%. You must get at least 4 points in each partial test for the absence to recover. A 4.5 points the average of the continuous assessment tests to pass the course by the middle notes of items 2 and 3.

2. Laboratory activities. The total weight of the subject is 35%. It is essential to approve them to pass the course. No recovery mechanism established practice.

3. Student works. The total weight of the subject is 15%. Corresponds to the student works done during the course.

There is a final exam to recover part of the continuous assessment or suspended for up note. In the latter case, the final grade will be that obtained in this last race.

Any modification that has been produced in this forecast assessment due to unforeseen circumstances, will be communicated to students.

Evaluation activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practices</td>
<td>35%</td>
<td>10</td>
<td>0.4</td>
<td>1, 2, 3, 4, 5, 6, 8</td>
</tr>
<tr>
<td>Problems/Seminars</td>
<td>15%</td>
<td>10</td>
<td>0.4</td>
<td>1, 2, 3, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>Theory</td>
<td>50%</td>
<td>4</td>
<td>0.16</td>
<td>1, 3, 4, 5, 8</td>
</tr>
</tbody>
</table>

Bibliography
