Use of languages

Principal working language: **english (eng)**

Contact

Name: Xavier Oriols Pladevall
Email: Xavier.Oriols@uab.cat

Teachers

Xavier Oriols Pladevall
Jordi Suñé Tarruella
Pedro Carlos Feijoo Guerro
David Jiménez Jiménez
Enrique Alberto Miranda

Prerequisites

Some basic knowledge about electron devices is very convenient.

Objectives and Contextualisation

1) Obtain a general vision about the state-of-the-art in nanoelectronics mainly from the analysis of the International Technology roadmap for Semiconductors. This will include the understanding of the most important technological barriers, the research goals and the main evolution trends.

2) To know the main techniques for the fabrication of electron devices, with the goal of establishing a link to their performance.

3) To acquire a broad view of the main techniques for the simulation of nanoelectronic devices, being able to determine which method is most adequate for each particular situation.

4) Get some understanding of the principles of operation of the main nanoelectronic devices, including devices for logic and memory.

Skills

- Analyse the benefits of nanotechnology products, within one’s specialisation, and understand their origins at a basic level
- Continue the learning process, to a large extent autonomously
- Critically analyze the principles of operation and expected benefits of electronic devices operating at the nanoscale (nano-electronics specialty)
- Identify and distinguish the synthesis/Manufacturing techniques for nanomaterials and nanodevices typically adopted in one’s specialisation.
• Show expertise in using scientific terminology and explaining research results in the context of scientific production, in order to understand and interact effectively with other professionals.

Learning outcomes

1. Choose the most appropriate simulation/modelling method for a nanoelectronic device on the basis of its physical characteristics and operational principle.
2. Continue the learning process, to a large extent autonomously
3. Describe the current state of nanoelectronic technologies and the directions in which they are moving, in accordance with the International Technology Roadmap for Semiconductors.
4. Describe the operational principles of emerging devices, and their main advantages and limitations.
5. Describe the operational principles of what are currently the main logic and memory devices.
6. Know the principles behind the techniques used for making the most important nanoelectronic devices.
7. Show expertise in using scientific terminology and explaining research results in the context of scientific production, in order to understand and interact effectively with other professionals.

Content

Tema 1.- Nanoelectronic FET devices

1.1- MOS structure.
1.2- Long channel MOSFETs.
1.3- Short channel MOSFETs.
1.4.- Scaling and design of MOSFET.
1.5.- Advanced CMOS (SiNWs FET, CNT-FETs, GFETs, ...).

Tema 2.- Fabrication technologies for nanoelectronic devices

2.1- Crystal and film growth.
2.2.- Oxidation, Etching, and Lithography.
2.4.- IC fabrication. Advanced techniques.

Tema 3.- Physics and simulation of nanoelectronic devices

3.1.- Overview of simulation techniques and physical modelling
3.2.- Classical and quantum mechanical considerations: band-structure
3.3.- Thermodynamical considerations: Fermi statistics
3.4.- Landauer model: time-dependent and time independent models
3.5.- Semi-classical and quantum Monte Carlo simulations.
3.6.- Noise in nanoelectronic devices.

Tema 4.- Advanced nanoelectronic devices for logic and memory

4.1.- Overview beyond CMOS nanoelectronic devices.
4.2.- Single electron devices and molecular electronics.
4.3.- Storage Class memories (FeRAM, MRAM, RRAM, ...).
4.4- Memristors and Memristive Devices.

Methodology

We will combine class lectures with autonomous homework, including the reading of research papers, solution of exercises, the critical reading of ITRS documents and the use of device simulation tools.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous works and report writing</td>
<td>65</td>
<td>2.6</td>
<td>7</td>
</tr>
<tr>
<td>Lessons</td>
<td>30</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Oral presentation</td>
<td>6</td>
<td>0.24</td>
<td>7</td>
</tr>
<tr>
<td>Reading of research papers and other scientific documents</td>
<td>30</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Use of TCAD tools for electron devices</td>
<td>15</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation

We will combine the final exam (55%) with careful preparation of homework problems (15%), the use of device simulations tools (15%) and reports of state-of-the-art scientific papers (15%)

Evaluation activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device simulation tools</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>1, 2, 5, 7</td>
</tr>
<tr>
<td>Final exam</td>
<td>55</td>
<td>4</td>
<td>0.16</td>
<td>1, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Homework reports</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>1, 2, 3, 7</td>
</tr>
<tr>
<td>Reading on state-of-the-art scientific papers</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>3, 4, 5, 6, 7</td>
</tr>
</tbody>
</table>

Bibliography

Campus virtual: https://cv.uab.es/

Bibliografia Tema 1:

Bibliografia Tema 2:
Fundamentals of semiconductor fabrication. G. S. May and S. M. Sze. John Willey and Sons. 2004

Bibliografia Tema 3:

Supriyo Datta, Quantum Transport: Atom to Transistor, 2nd Edition

Cambridge University Press, New York

Bibliografia Tema 4:

Rainer Waser Ed. Nanoelectronics and Information Technology. Editorial WILEY-VCH

Memristor and memristive systems, R. Stanley Williams (auth.),Ronald Tetzlaff (eds.), Springer, 2014

Recursos WEB

http://nanohub.org/

http://www.itrs.net/

Bibliografía complementaria dispositivos electrònics:

MODULAR SERIES ON SOLID STATE DEVICES (Addison-Wesley)

Bibliografía complementaria circuits electronics:

Bibliografía complementaria dispositius optoelectronics:

B.E.A. Salech and M.C. Theich Fundamentals of Photonics Editorial John Wiley & Sons