Parallel and Distributed Calculation Systems
Code: 43343
ECTS Credits: 6

Degree
4313136 Modelling for Science and Engineering
4314660 Computer Engineering

Type Year Semester
OT 0 1
OB 1 1

Contact
Name: Remo Lucio Suppi Boldrito
Email: Remo.Suppi@uab.cat

Teachers
Miquel Àngel Senar Rosell
Antonio Miguel Espinosa Morales

Prerequisites
It is recommended to have successfully knowledge in Computer Basics, Programming Languages, Networks & Distributed Systems.

Objectives and Contextualisation
At the end of this subject, students should have enough knowledge, methods and technical skills to research on innovative solutions to distributed systems problems.

Use of languages
Principal working language: english (eng)

Competence Description
Knowledge
• Analyze and evaluate parallel architectures and distributed computers, and advanced software development and optimization.
• Investigate innovative solutions to operating systems problems, servers and applications, and systems based on distributed computing, and more efficient solutions than those currently used.
• Understand and analyze the different alternatives for mass storage data systems.

Expertise
• Knowing how to manage parallel computing environments, and understand their implications and cost benefits and services.
• Use and apply a wide range of design techniques, middleware and development tools for tuning an application environment.
• Be able to select both the distributed platform, such as the most suitable language, for solving problems in distributed computing.
• Apply the knowledge acquired in the design of distributed storage systems, to design data-intensive applications.

Attitude

• Demonstrate accountability in the management of information and knowledge, and address groups and/or multidisciplinary projects.
• Apply research methods, techniques and specific resources for research in a particular area of expertise.

Skills

Modelling for Science and Engineering
• Analyse and evaluate parallel and distributed computer architectures, and develop and optimise advanced software for these.
• Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
• Continue the learning process, to a large extent autonomously.
• Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
• Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
• Take part in research projects and working groups in the field of information engineering and high-performance computation.
• Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.

Computer Engineering
• Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
• Communicate orally and in writing in English.
• Continue the learning process, to a large extent autonomously.
• Define and communicate results, guaranteeing high levels of performance and quality.
• Design and evaluate operating systems and servers and applications and systems based on distributed computing.
• Display a capacity for the preparation, strategic planning, coordination and technical and financial management of projects in all areas of computer engineering, applying criteria of quality and environmental sustainability.
• Integrate and apply the knowledge acquired and solve problems in new or little-known situations within broader (or multidisciplinary) contexts.
• Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
• Model, design, and define architectures, implement, manage, operate and maintain computer applications, networks, systems, services and content.
• Propose, calculate and design products, processes and installations in all areas of computer engineering.
• Responsibly manage information and knowledge when leading multidisciplinary groups and/or projects.
• Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
• Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.

Learning outcomes

1. Apply a wide range of techniques for designing middleware and development tools to tie together the environment and the application.
2. Apply the knowledge acquired in the design of distributed storage systems to designing intensive data and computation applications.
3. Apply the knowledge acquired in the design of distributed storage systems to designing intensive data and computing applications.
4. Choose both the distributed platform and the most appropriate language when formulating a solution to a distributed computation problem.
5. Choose both the distributed platform and the most appropriate language when formulating a solution to a distributed computing problem.
6. Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
7. Communicate orally and in writing in English.
8. Continue the learning process, to a large extent autonomously
9. Continue the learning process, to a large extent autonomously.
10. Define and communicate results, guaranteeing high levels of performance and quality.
11. Display a capacity for the preparation, strategic planning, coordination and technical and financial management of projects in all areas of computer engineering, applying criteria of quality and environmental sustainability.
12. Distinguish the parallel computing environments and their implications in terms of performance and cost.
13. Integrate and apply the knowledge acquired and solve problems in new or little-known situations within broader (or multidisciplinary) contexts.
14. Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
15. Propose, calculate and design products, processes and installations in all areas of computer engineering.
16. Responsibly manage information and knowledge when leading multidisciplinary groups and/or projects.
17. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
18. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.

Content

T1: Distributed Computing Platforms (8 hours)
- Introduction and concepts DCP
- Data Intensive Applications
- Cluster computing
- Distributed computing environments: Apache Hadoop and Spark

T2: distributed application architecture: Cloud computing (12 hours)
- Context and evolution
- Case study: a) the implementation of a private cloud services for multiple Web sites with virtual machines. b) the implementation of a PaaS service web in a public cloud.

T3: Architectures of distributed applications: mobile platform (12 hours)
- Introduction to mobile platforms.
- Concepts programming, design and development of apps.
- Case study: development of a mobile application distributed locally.
T4: Massive data management. (8 hours)
- NoSQL Databases: Big Table, HBase
- Programming MapReduce
- Provision & Tuning of Hadoop

Methodology

The methodology will combine classroom work, problem solving in class, work in the computing lab, performing works from recommended readings and independent study student.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Directed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab work</td>
<td>16</td>
<td>0.64</td>
<td>3, 16, 13, 11, 15</td>
</tr>
<tr>
<td>Presentation work</td>
<td>8</td>
<td>0.32</td>
<td>7, 10, 16</td>
</tr>
<tr>
<td>Subjects</td>
<td>21</td>
<td>0.84</td>
<td>3, 1, 12, 17, 6, 14, 8, 5, 18</td>
</tr>
<tr>
<td>Type: Autonomous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study and home works</td>
<td>100.5</td>
<td>4.02</td>
<td>3, 1, 12, 8, 5, 13, 11, 15, 18</td>
</tr>
</tbody>
</table>

Evaluation

Evaluation will come out from the combination of: (1) work developed on the areas in the module, (2) attendance to lectures and participation in class and labs, and (3) a final exam.

Evaluation activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>35%</td>
<td>2</td>
<td>0.08</td>
<td>2, 1, 5, 18</td>
</tr>
<tr>
<td>Lab work</td>
<td>35%</td>
<td>1</td>
<td>0.04</td>
<td>3, 1, 12, 16, 14, 6, 17, 8, 9, 5, 13, 11, 18</td>
</tr>
<tr>
<td>Presentation work</td>
<td>30%</td>
<td>1.5</td>
<td>0.06</td>
<td>3, 2, 1, 7, 10, 12, 16, 17, 6, 14, 8, 4, 5, 13, 11, 15, 18</td>
</tr>
</tbody>
</table>

Bibliography

BOOKS

• Bell, Charles; Kindahl, Mats; Thalmann, Lars. "MySQL High Availability". O'Reilly, 2010.
• Schwartz, Baron; Zaitsev, Peter; Tkachenko, Vadim; Zawodny, Jeremy D.; Lentz, Arjen; Balling, Derek J. "High Performance MySQL", O'Reilly, 2008.
• Taniar, David; Leung, Clement H.C.; Rahayu, Wenny; Goel, Sushant. "High Performance Parallel Processing and Grid Databases". Wiley, 2008.
• White, Tom. "Hadoop, the definitive Guide", O'Reilly, 2011.

Websites recommended:

https://cv.uab.cat/