

2018/2019

Laboratory and Virtuality in Primary Education

Code: 102088 ECTS Credits: 6

Degree	Туре	Year	Semester
2500798 Primary Education	ОТ	4	0

Contact

Use of languages

Name: Victor Lopez Simo	Principal working language: catalan (cat)
Email: Victor.Lopez@uab.cat	Some groups entirely in English: No
	Some groups entirely in Catalan: Yes
	Some groups entirely in Spanish: No

Prerequisites

Students should have already passed the two previous courses "*Ensenyament i Aprenentatge del Coneixement del Medi Natural, Social i Cultural*" in 2nd year and "*Didàctica de les ciències experimentals*" in 3rd year.

Objectives and Contextualisation

The course "Laboratori i Virtualitat" aims that participants, at the end of the course, will be able to:

- 1. Know and know how to use the different existing ICT for science teaching and learning (virtual tools, digital devices, mobile technology, etc.).
- 2. Understand the characteristics of the experimental work in primary education and how this can be supported by various ICT.
- 3. Incorporate ICT in science education, integrating them across all the educational planning.
- 4. Identify positive and negative aspects of each teaching ICT.
- 5. Provide reflections on the educational changes that implies introducing ICT in school.
- 6. Acquire criteria for selecting, using and designing virtual environments that foster scientific skills (exploration, observation, classification, prediction, variables control, etc.).

Skills

- Design and regulate learning spaces in contexts of diversity that take into account gender equality, equity and respect for human rights and observe the values of public education.
- Design, plan and evaluate education and learning processes, both individually and in collaboration with other teachers and professionals at the centre.
- Develop the functions of tutoring and guidance of pupils and their families, attending to the pupils own needs. Understand that a teachers functions must be perfected and adapted in a lifelong manner to scientific, pedagogical and social changes.
- Foster reading and critical analysis of the texts in different scientific fields and cultural contents in the school curriculum.
- Generate innovative and competitive proposals in research and in professional activity.
- Know and apply information and communication technologies to classrooms.

- Know the curricular areas of Primary Education, the interdisciplinary relation between them, the evaluation criteria and the body of didactic knowledge regarding the respective procedures of education and learning.
- Reflect on classroom experiences in order to innovate and improve teaching work. Acquire skills and habits for autonomous and cooperative learning and promote it among pupils.
- Work in teams and with teams (in the same field or interdisciplinary).

Learning outcomes

- 1. Identifying aspects common to all the experimental sciences and examining them in depth.
- 2. Identifying the difficulties in the teaching and learning of experimental sciences, and designing activities that respond to the diversity of students learning experiences.
- 3. Identifying, describing, and analysing the characteristics pertaining to management of the area of experimental sciences in the classroom, and the implementation of activities involving experimentation and the use of CLTs.
- 4. Knowing how to communicate and present an argument in science lessons.
- 5. Planning for scientific learning situations in contexts outside of the school.
- 6. Produce and apply resources related to the teaching and learning of experimental sciences.
- 7. Promoting the use of explanatory models.
- 8. Relating science with its technological applications, with its social impact on the didactic situations pertaining to the school.

Content

Section 1: ICT and scientific practice in classroom. Which ICT shoud we use, when, how and why?

Section 2: Digital tools for enriching the experimental activities in school: mobilephones, digital sensors, digital lenses and videos.

Section 3: Digital tools for working with virtual models in the classroom: animations, simulations, video games and virtual laboratories.

Section 4: Digital tools to communicate scientifically: interactive whiteboard and Scratch language.

Methodology

The course "Laboratori i Virtualitat" combines different kind of work: laboratory experimental activities, experimental field activities and computer room activities. Is particularly important work in small groups and whole-class discussions.

Activities

Title	Hours	ECTS	Learning outcomes
Type: Directed			
Section 1	5	0.2	6, 3, 5, 8, 4
Section 2	15	0.6	6, 3, 5, 8, 4
Section 3	15	0.6	6, 1, 2, 3, 5, 7, 8, 4
Section 4	10	0.4	6, 3, 5, 8, 4
Type: Supervised			

Tutoring Section 2	5	0.2	
Tutoring Section 3	5	0.2	
Tutoring Section 4	5	0.2	
Tutoring for final exam and reflective work	15	0.6	
Type: Autonomous			
Autonomous work for elaboration of deliberables	60	2.4	6, 3, 5, 8, 4
Preparation of final evaluation	13	0.52	6, 2, 3, 5, 7, 8, 4

Evaluation

The evaluation of the course "Laboratori i Virtualitat" include different sections:

- Classroom participation: 10%.
- Activities about use of ICT in schools (3 along the course): 15% each one; 45% in total.
- Final reflective work: 20%
- Final exam: 20%.

Relevant information:

- According to the UAB regulation, plagiarism or copying of any work will be penalized with a 0, without any possibility to repeat the activity (both for individual or collective works).
- Class attendance is mandatory: students must attend all classes to be evaluated (it is allowed a maximum of 20% of incidents), otherwise it will be considered as not evaluable.

Title	Weighting	Hours	ECTS	Learning outcomes
Activity with ICT 1	15%	0	0	6, 3, 5, 8, 4
Activity with ICT 2	15%	0	0	6, 1, 2, 3, 5, 7, 8, 4
Activity with ICT 3	15%	0	0	6, 3, 5, 8, 4
Clasroom participation	10%	0	0	8
Final exam	25%	2	0.08	6, 2, 3, 5, 8
Final reflextive work	20%	0	0	6, 1, 2, 3, 5, 8, 4

Evaluation activities

Bibliography

Chivite, J. (2010). Com influencia la temperatura en el creixement de les hortalisses en un hivernacle. *Ciències. Revista del Professorat de Ciències d'Infantil, Primària i Secundària,* 17, 2-6.

Colette Murphy (2003). Literature Review in Primary Science and ICT. A NESTA Futurelab Series - report 5.

Demkanin, P., Kibble, B., Lavonen, J. Josefa Guitart Mas, Jozefina Turlo (2008). *Effective use of ICT in Science Education*. University of Edinburg.

Hennessy, S., Wishart, J., Whitelock, D., Deaney, R., Brawn, R., la Velle, L., McFarlane, A., Ruthven, K. and Winterbottom, M. (2007). Pedagogical approaches for technology-integrated science teaching. *Computers and Education*, 48 (1), 137-152.

López, V. i Hernández, M.I. (2013). El Scratch com a eina de modelització computacional. *Ciències. Revista del Professorat de Ciències d'Infantil, Primària i Secundària,* 26, 28-33.

Osborne, J., Hennessy, S. (2003). *Literature Review in Science Education and the Role of ICT: Promise, Problems and Future Directions*. A NESTA Futurelab Research report - report 6.

Pintó, R., Couso, D., Hernández, M.I. (2010) An inquiry-oriented approach for making the best use of ICT in the science classroom. *e-Learning papers*, 20, 1-14.