

2018/2019

Nanomateriales para la Energía y el Medio Ambiente

Código: 103296 Créditos ECTS: 6

Titulación	Tipo	Curso	Semestre
2501922 Nanociencia y Nanotecnología	ОТ	4	0

Contacto

Nombre: José Antonio Ayllón Esteve

Correo electrónico: JoseAntonio.Ayllon@uab.cat

Uso de idiomas

Lengua vehicular mayoritaria: español (spa)
Algún grupo íntegramente en inglés: No
Algún grupo íntegramente en catalán: No

Algún grupo íntegramente en español: No

Prerequisitos

Se recomienda haber aprobado las asignaturas Dispositivos Electrónicos, Estado Sólido, Física y Química de Superficies y Síntesis y Estructura de Materiales Cristalinos y Amorfos.

Es recomendable un buen nivel de inglés ya que gran parte del material que deberá trabajar el estudiante así como las principales fuentes bibliográficas se encuentran escritas en esta lengua.

Objetivos y contextualización

La asignatura se divide en dos módulos. En el primero se presentan los principales materiales utilizados en dispositivos utilizados para la generación y / o almacenamiento de energía, haciendo especial énfasis en sus propiedades clave así como en su procesamiento.

En el segundo módulo se estudia la relación de los nanomateriales con el medio ambiente bajo dos aproximaciones complementarias: su uso para la resolución de problemas de contaminación y las amenazas que puede representar la dispersión de ciertos nanomateriales en el medio ambiente.

Competencias

- Adaptarse a nuevas situaciones.
- Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa en el ámbito de la Nanociencia y Nanotecnología.
- Aprender de forma autónoma.
- Comunicarse con claridad en inglés.
- Comunicarse de forma oral y escrita en la lengua nativa.
- Demostrar que comprende los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
- Gestionar la organización y planificación de tareas.
- Mantener un compromiso ético.
- Mostrar sensibilidad hacia temas medioambientales.
- Obtener, gestionar, analizar, sintetizar y presentar información, incluyendo la utilización de medios telemáticos e informáticos.
- Operar con un cierto grado de autonomía e integrarse en poco tiempo en el ambiente de trabajo
- Proponer ideas y soluciones creativas.

- Razonar de forma crítica.
- Reconocer los términos relativos al ámbito de la Física, Química y Biología, así como a la Nanociencia y la Nanotecnología en lengua inglesa y utilizar eficazmente el inglés en forma escrita y oral en su ámbito laboral.
- Reconocer y analizar problemas físicos, químicos y biológicos en el ámbito de la Nanociencia y Nanotecnología, plantear respuestas o trabajos adecuados para su resolución, incluyendo en casos necesarios el uso de fuentes bibliográficas.
- Resolver problemas y tomar decisiones.
- Trabajar en equipo y cuidar las relaciones interpersonales de trabajo.

Resultados de aprendizaje

- 1. Adaptarse a nuevas situaciones.
- 2. Aplicar los contenidos teóricos adquiridos a la explicación de fenómenos experimentales.
- 3. Aprender de forma autónoma.
- 4. Comunicarse con claridad en inglés.
- 5. Comunicarse de forma oral y escrita en la lengua nativa.
- 6. Describir materiales y nanomateriales con propiedades que permiten el ahorro energético.
- 7. Describir procesos de eliminación de contaminantes del medio ambiente que utilicen nanomateriales
- 8. Evaluar resultados experimentales de forma crítica y deducir su significado.
- 9. Gestionar la organización y planificación de tareas.
- 10. Identificar el impacto de los nanomateriales en el medio ambiente.
- Interpretar textos en inglés sobre aspectos relacionados con la Física y Química en Nanociencia y Nanotecnología.
- 12. Mantener un compromiso ético.
- 13. Mostrar sensibilidad hacia temas medioambientales.
- 14. Obtener, gestionar, analizar, sintetizar y presentar información, incluyendo el uso de medios telemáticos e informáticos.
- 15. Operar con un cierto grado de autonomía e integrarse en poco tiempo en el ambiente de trabajo
- 16. Predecir las aplicaciones de un material o nanomaterial en celdas solares, en pilas de combustible y en procesos de almacenaje y transporte de energía eléctrica.
- 17. Predecir las posibles aplicaciones y, los efectos en el medio ambiente, de un material o nanomaterial avanzado
- 18. Proponer ideas y soluciones creativas.
- 19. Proponer materiales y nanomateriales para procesos y dispositivos relacionados con la energía.
- 20. Razonar de forma crítica.
- 21. Realizar búsquedas bibliográficas de documentación científica.
- 22. Reconocer la aplicación de los nanomateriales en la captación de energía en celdas fotovoltaicas, en el transporte de energía eléctrica y en la generación y almacenaje de hidrógeno.
- 23. Reconocer la potencialidad de los nanomateriales termoeléctricos en la mejora de la eficiencia energética.
- 24. Reconocer las fuentes y el uso de la energía en la sociedad actual.
- 25. Reconocer los riesgos para la salud y el medio ambiente asociados a la manipulación de compuestos químicos y materiales en general.
- 26. Reconocer los términos propios de los procesos y dispositivos para la generación, almacén y transporte de energía, así como de las aplicaciones e impacto de los nanomateriales en el medio ambiente.
- 27. Redactar y exponer informes sobre la materia en inglés.
- 28. Resolver problemas con la ayuda de bibliografía complementaria proporcionada.
- 29. Resolver problemas y tomar decisiones.
- 30. Trabajar en equipo y cuidar las relaciones interpersonales de trabajo.

Contenido

Módulo 0. Repaso de los principales tipos de materiales nanoestructurados y los principales métodos de síntesis.

Módulo 1. Nanomateriales para la producción, almacenamiento y uso eficiente de la energía.

Celdas solares

Pilas de combustible

Termoeléctricos

Baterías

Hidrógeno: producción y almacenamiento.

Reducción del CO2.

Nanomateriales para el uso eficiente de la energía.

Módulo 2. Nanomateriales y Medio Ambiente.

Adsorbentes

Fotocatalizadores

Nanofiltración

Impacto ambiental de los nanomateriales

Metodología

La asignatura consta de:

34 horas de teoría + 6 horas de problemas + 12 horas de prácticas de laboratorio.

Clases de teoría

Se llevarán a cabo combinando la utilización de material informático y la pizarra.

Clases de problemas

Consistirán seminarios en los que se profundizará en algunos aspectos concretos del temario, analizando documentos de la literatura científica. Se valorará la participación activa de los alumnos. La asistencia es obligatoria.

Prácticas de laboratorio

Consistirán en la preparación y ejecución de diversas prácticas experimentales con la construcción de una celda solar y el estudio de baterías. La asistencia es obligatoria

Actividades

Título Horas ECTS Resultados de aprendizaje

Tipo: Dirigidas

6	0,24	2, 8, 15, 18, 19, 20, 28, 29
34	1,36	6, 7, 10, 16, 17, 19, 22, 23, 24
12	0,48	2, 3, 21, 13, 18, 20, 25, 26, 27, 29
5	0,2	5, 9, 20, 29
8	0,32	1, 5, 9, 15, 18, 20
48	1,92	2, 3, 8, 6, 7, 9, 10, 11, 14, 15, 16, 17, 19, 25, 26, 22, 23, 24
24	0,96	3, 5, 9, 12, 13, 15, 18, 20, 27, 29, 30
10	0,4	2, 3, 9, 18, 20, 28, 29, 30
	34 12 5 8 48 24	34 1,36 12 0,48 5 0,2 8 0,32 48 1,92 24 0,96

Evaluación

La evaluación se hará de forma continuada. Se propondrán dos parciales, la nota de los cuales determinará el 40% de la nota final.

Se propondrán ejercicios, trabajos escritos y presentaciones orales, individuales y / o en grupo con fecha de entrega, la nota de los cuales determinará otro 40% de la nota final.

El restante 20 % de la nota se determinará en función de la evaluación de las prácticas de laboratorio, mediante tests y presentación de informes.

Para superar la asignatura es necesario tener una nota media ponderada igual o superior a 5,0. Para los alumnos que no superen dicha nota habrá un examen de recuperación. Es necesario haber hecho 2/3 partes de las actividades de la evaluación continua y los exámenes parciales para tener derecho a realizar la prueba de recuperación.

Actividades de evaluación

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Ejercicios, trabajos escritos y presentaciones orales	40%	0	0	1, 2, 3, 8, 4, 5, 6, 7, 21, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 22, 23, 24, 27, 28, 29, 30
Examen escrito	40%	3	0,12	2, 3, 8, 5, 6, 7, 10, 15, 16, 17, 18, 19, 26, 22, 23, 24, 28
Prácticas de Laboratorio Experimental	20	0	0	1, 2, 8, 9, 13, 18, 27, 28, 29

Bibliografía

Environmental Nanotechnology: Applications and Impacts of Nanomaterials

Ed. Mark R. Wiesner, P.E. Jean-Yves Bottero, McGraw-Hill 2007.

Energy Storage. Robert A. Huggins, Springer 2010.

Solar Hydrogen Generation: Towarda Renewable Energy Future.

Ed. K. Rajeshwar, R. McConnell and S. Licht, Springer 2008.

Ademas se hará un uso extensivo de artículos de revisión accesibles desde los ordenadores ubicados en el campus de la UAB.