Advanced Networks and Security Code: 42850 ECTS Credits: 6 | Degree | Туре | Year | Semester | |--|------|------|----------| | 4313797 Telecommunications Engineering | ОВ | 1 | 1 | #### Contact ### Use of languages Name: Ramon Martí Escalé Principal working language: english (eng) Email: Ramon.Marti.Escale@uab.cat ### **Prerequisites** Knowledge of basic network communications architecture is desired. ### **Objectives and Contextualisation** The objective of this module is to deepen in the communication networks and in its security. Specifically, it will centred in providing to the students knowledge on: - 1. Introduction to the communication layers architecture and security in Internet - 2. Description of the Internet architecture and the advanced routing protocols - 3. Content Management services - 4. Next Generation Internet protocols - 5. Advanced network security #### **Skills** - Be capable of resolving convergence, interoperability and design of heterogeneous networks with local, access and truncal networks as well as the integration of telephone, data, television and interactive services - Be capable of understanding and knowing how to apply internet organisation and function, next generation internet technologies and protocols, components models, intermediary software and services. - Capacity for modelling, designing, introducing, managing, operating, administrating and maintaining networks, services and content. - Capacity for planning, decision-making and packaging of networks, services and applications considering the quality of service, direct and operating costs, the implementation plan, supervision, security procedures, scaling and maintenance and for managing and ensuring quality in the development process. - Capacity for working in interdisciplinary teams - Student should possess the learning skills that enable them to continue studying in a way that is largely student led or independent - Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study - Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously ### Learning outcomes - 1. Capacity for working in interdisciplinary teams - 2. Integrate services and security in current and next generation internet. - 3. Student should possess the learning skills that enable them to continue studying in a way that is largely student led or independent - 4. Students should know how to apply the knowledge they have acquired and their capacity for problem solving in new or little known fields within wider (or multidisciplinary) contexts related to the area of study - 5. Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously - 6. Understand global internet architecture and the channelling protocols used. - 7. Understand security procedures in networks, services and applications. - 8. Understand the advanced mechanisms of cryptography and the main attacks and security mechanisms on the different levels of the web and in next generation internet. - 9. Understand the architecture of content management services - 10. Understand the design and administration mechanisms of content management services. - 11. Understand the layers of architecture in internet communications, protocols and principal services. - 12. Understand the main protocols associated with the next generation of internet. #### Content #### Structure and contents: - 1. Protocols and Architectures - Protocols, interfaces and services - Network architectures - 2. Advanced Routing Protocols - Internet architecture - RIP - OSPF - BGPv4 - 3. Content Management Services - Content management services architecture - Content management services design - Content management services administration - 4. Next Generation Internet - IPv6 - Mobile IP - Advanced Networks Mobile ad-hoc networks (MANET) Delay and Disruption Tolerant Networks (DTNs) Wireless sensor networks Service Advertisement and Discovery Pervasive computing Radio Frequency IDentification (RFID) Big Data - 5. Network Security - Advanced cryptography #### Security mechanisms - Attacks and prevention mechanisms at the different network layers Attacks and prevention mechanisms at the network layer Attacks and prevention mechanisms at the transport layer Attacks and prevention mechanisms at the application layer - Security in Next Generation Internet - Mobile IP security - Ad-hoc networks security - Wireless Sensor Networks security - DTN security - Pervasive computing security - RFID security - Big Data security - Cryptocurrencies ### Methodology The work methodology will combine the face-to-face classes, the realisation of works in the laboratory, the realisation of works from recommended readings and the autonomous work of the student. It will make use of the virtual platform and the presentation of works related with the thematic blocks will be required. During the course, we will carry out the following activities: - Theory sessions (directed), where the teacher will provide information on the knowledge of the subject and on strategies to acquire, expand and organise this knowledge. The active participation of the students will be encouraged during these sessions, for example posing discussions in those points that admit diverse technological solutions. - Problems sessions (directed), where the students will have to actively take part to consolidate the knowledge acquired resolving, presenting and debating related problems. Problems are distinguished from the exercises, which can be considered as trivial problems. The problems often will admit several solutions and will be able to originate debate between the students. - Laboratory practical sessions (supervised and autonomous), where small projects will be posed to be analysed and developed by the students in group. The sessions will be previously prepared, documented and programmed by the teacher, and the students will have to prepare them before assisting, reviewing the related theoretical knowledge and the basic technical aspects developmental. The practical sessions must serve to the students to attain the skills of the subject and contribute to attain some competitions such as the one of autonomous work. - Preparation of the portfolio of the subject (autonomous), in a virtual way through a wiki, collaborative work web tool. The students will have to work autonomously in teams in the research and the preparation of the corresponding material of the evidences of his theory and problems learning, and in the study of this material. The evidences comprise extensions of the different subjects exposed to the sessions of theory and collaborative resolution of problems. The teacher will do the follow-up of the work of the different teams, will provide feedback to the teams depending of the task done and of the doubts that pose or of the errors that manifest. The preparation of the portfolio has to serve to the students to contribute to attain the competitions of the subject. The teaching methodology and the evaluation go tightly tied to the wiki-based virtual portfolio system, that is the cohesive element of the different teaching activities during the course, and that allow a system of continued and formative evaluation, incorporated to the process of education/learning. The wiki will help the students to develop a constant work that will bring them to attain the knowledge proposed, and the skills and the competitions associated to the theory and problems parts. #### **Activities** | Title | Hours | ECTS | Learning outcomes | |----------------|-------|------|-------------------| | Type: Directed | | | | | Directed activities | 45 | 1.8 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | | |-----------------------|----|-----|---------------------------------------|--| | Type: Supervised | | | | | | Supervised activities | 15 | 0.6 | 1, 2, 3, 4, 5, 7, 8 | | | Type: Autonomous | | | | | | Autonomous activities | 90 | 3.6 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | | ### **Evaluation** #### **Evaluation systems** - Written tests: Partial and final written tests - Delivery of reports or problems: Brief reports on specific subjects - Work in the laboratory and corresponding memories: it will assess the previous preparation of the practice, the capacity to realise it in an efficient form and the quality of the analyses reflected in the memory. - Presentations and participation in the problems and cases seminars: it will evaluate the previous preparation of the questions/exercises/cases assigned for the session The final mark for the course, that includes the assessment of the acquisition of knowledge and skills, is calculated in the following way: - 25%, from the mark of the work in the presentations and participation in the problems and cases seminars. The minimum required in this part is 5 out of 10. If the student passes the validation of knowledge tests and the minimum of the work in the portfolio is not reached, he/she will be able to recover this part before the closing date for marks. - 40%, from the mark of the written tests. The minimum required in this part is 5 out of 10. To carry out the validation of the knowledge, there will be two partial tests during the year (a partial test to assess Part I of the course and a partial test to assess Part II of the course) and a final exam (to assess both parts). - If the student gets more than 4 in any of the two partial tests, he/she will not be assessed again from this part in the final exam (the mark of this part will be the one from the partial exam). The final mark will be the average of the marks obtained in both parts. To calculate the average, the student must obtain more than a mark of 4 in each of the parts (either in the partials or in the final tests). In case that a student gets more than 4 in both partial tests, but the average is lower than 5, he/she will have to take the final exam of the part with a mark lower than5(in caseboth parts are lower than 5, the student will be able to decide if he wants to take the final exam of both parts or only 1 of them). - 10%, from the mark of the work done in delivery of reports or problems. No minimum is required for this part. - 25%, from the mark of the laboratory. The minimum required in this part is 5 out of 10. If the student does not get the minimum mark of the laboratory sessions, he/she will be able to recover this part before the closing date for marks. A minimum final mark of 5 is required to pass the course. The evaluation mechanisms used in the subject are described in more detail below. #### Programming of evaluation activities The dates of continuous evaluation and delivery of works will be published on the first day of the subject on the virtual campus (and/or wiki page of the subject) and may be subject to possible changes due to adaptation to possible incidents. These changes will always be reported on the virtual campus (and/or wiki page of the subject) since it is understood that this is the usual platform for the exchange of information between professors and students. The following evaluation activities are planned: - Portfolio: weekly - Classroom activities: in the problem classes - Practices: 6 sessions during the course, in general every other week - Partial theory exams of parts I and II of the subject: around weeks 10 and 15 - Final exam of theory ### **Retaking process** Students may take the retaking process if they have taken a set of activities that represent at least two-thirds of the total grade of the course. Retaking mechanisms will focus on activities 1) Portfolio, 2) Validation of Knowledge, 3) Practical sessions. In the event that a student has not passed any, or all of these parts, before the date of the final exam, he can retake this part by means of a written test (cases 2 and 3), doing a second delivery of the practice (case 3) or finishing the wiki Portfolio before that date (case 1). In case 1, if the student retakes the Portfolio part, he or she will get a pass or fail. If the student passes, she/he will have a maximum grade of 5. If she/he fails, she/he will get the mark previously obtained in this part. #### Review of the exam procedure For each assessment activity, a place, date and time of revision will be indicated in which the student will be able to review the activity with the teacher. In this context, claims can be made about the activity mark, which will be evaluated by the teacher responsible for the subject. Unless otherwise noted, if the student does not attend this revision, this activity will not be able to be reviewed later. ### Special grades When a student has not done any work in laboratory, has not taken any of the partial or final theory written tests, and has a mark lower than 5 in the work in the presentations and participation in the problems and cases seminars, it will be considered that there are not enough assessment evidences, and the final mark will be "not assessable." The rest of students who have not passed the subject will get a "Suspens" (fail) grade, with the mark obtained in the subject. Those students qualifiedwith "Suspens" due to not having reached the minimum mark in any of the evaluation tests, will have the mark got in the evaluation exam that has not reached the minimum required (always taking the minimum grade in the case that the minimum in several tests is not obtained). Honor grade (Matrícula d'Honor, MH): Granting an honor grade qualification is a decision of the faculty responsible for the subject. The regulations of the UAB indicate that MH can only be awarded to students who have obtained a final grade of 9.00 or more. It can be granted up to 5% of MH of the total number of students enrolled. #### Irregularities by student parts, copy and plagiarism Notwithstanding other disciplinary measures that are deemed appropriate, and in accordance with the current academic regulations, the irregularities committed by the student that can lead to a variation in the qualification of an evaluation act will be graded with a zero. Therefore, copying or letting copying a practice or any other evaluation activity will involve failing with a zero, and if it is necessary to pass it to pass the subject, the entire subject will be failed. The evaluation activities qualified in this way and by this procedure cannot be retaken, and therefore the subject will be failed directly without the opportunity to retake it in the same academic year. ### Evaluation of repeating students The repeating students will be able to validate the theory part of the subject. The way tocalculate the final mark will be the same as mentioned above, taking the note from the portfolio, classroom activities and exam of the part(s) of the theory to validate. Repeating students will also be able to validate the practices separately. The way to calculate the final mark will be the same as mentioned above, taking the note from the practice(s) to validate. ## **Evaluation activities** | Title | Weighting | Hours | ECTS | Learning outcomes | |--|-----------|-------|------|--| | Delivery of reports or problems | 10% | 0 | 0 | 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12 | | Presentations and participation in the problems and cases seminars | 25% | 0 | 0 | 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12 | | Work in the laboratory and corresponding memories | 25% | 0 | 0 | 1, 2, 3, 4, 5, 7, 8 | | Written tests | 40% | 0 | 0 | 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | # **Bibliography** Aspectos avanzados de seguridad en redes. Jordi Herrera Joancomartí (coord.), Joaquín García Alfaro, Xavier Perramón Tornil. Segunda edición, febrero 2007. Fundació per a la Universitat Oberta de Catalunya (http://openaccess.uoc.edu/webapps/o2/handle/10609/204)