Molecular Bases of Signal Transduction and Cancer

Code: 42893
ECTS Credits: 9

<table>
<thead>
<tr>
<th>Degree</th>
<th>Type</th>
<th>Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4313794 Biochemistry, Molecular Biology and Biomedicine</td>
<td>OT</td>
<td>0</td>
<td>A</td>
</tr>
</tbody>
</table>

Contact

Name:
Victor J. Yuste Mateos Grup mort cel.lular,

Use of languages

Principal working language: english (eng)

Other comments on languages

80%

Teachers

Néstor Gómez Trias
José Miguel Lizcano de Vega
Jose Manuel Lopez Blanco
Victor Jose Yuste Mateos
Jose Ramon Bayascas Ramirez
Anna Bassols Serra

External teachers

Ana Cuenda - Centro Nacional de Biotecnología. Madrid
Joan Seoane - VHIO Barcelona
Miguel F Segura - VHIR Barcelona
Violeta Serra - VHIO Barcelona

Prerequisites

This is an advanced course for graduate students in Biology, Biotechnology, Biochemistry, Biomedicine, Genetics, Microbiology, as well as graduates in Medicine and Veterinary.

A comprehensive understanding of Molecular Cell Biology is highly recommended

Specific interest in the subject. Commitment active and dynamic students

High level of English is mandatory (Understanding, spoken writing).
Objectives and Contextualisation

Providing advanced training on the molecular mechanisms involved in signal transduction pathways and in the control of cell proliferation, and how these mechanisms are altered in the cancer cell.

Reviewing and updating key concepts of the field

Defining our current knowledge on the field, as well as identifying critical issues to be investigated.

Skills

- Analyse and correctly interpret the molecular mechanisms operating in living beings and identify their applications.
- Analyse and explain normal morphology and physiological processes and their alterations at the molecular level using the scientific method.
- Develop critical reasoning within the subject area and in relation to the scientific or business context.
- Identify and propose scientific solutions to problems in molecular-level biological research and show understanding of the biochemical complexity of living beings.
- Integrate contents in biochemistry, molecular biology, biotechnology and biomedicine from a molecular perspective.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
- Use and manage bibliography and IT resources related to biochemistry, molecular biology or biomedicine.
- Use scientific terminology to account for research results and present these orally and in writing.

Learning outcomes

1. Describe, in molecular terms, the mechanisms involved in signal transduction and its alteration in cancer.
2. Develop critical reasoning within the subject area and in relation to the scientific or business context.
3. Discuss cases of molecular interactions that can trigger physiological reactions.
4. Distinguish the mechanisms of action of antitumour drugs.
5. Explain how the deregulation of normal processes in a tissue (angiogenesis, metabolism) affects tumour progression and degree of malignancy.
6. Explain the importance of tumoral stem cells in the process of tumoral progression and the relation to to the processes of cell differentiation and cell death.
7. Explain, in molecular terms, the mechanisms that control the cell cycle and genomic integrity.
8. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
9. Understand responses triggered by receptors of growth factors and antiproliferative factors.
10. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
11. Use and manage bibliography and IT resources related to biochemistry, molecular biology or biomedicine.
12. Use scientific terminology to account for research results and present these orally and in writing.

Content

Introduction (Jose Miguel Lizcano). How can we define cancer? Definition and tumor types. Origin, causes and carcinogen agents. Epidemiology and risk factors.

Protein kinases (Nestor Gomez). Structure, classification, regulation and its role in cancer.

MAP kinases and Protein phosphatases in cancer (Nestor Gomez). MAP kinases function. Regulation of MAP kinases activity and subcellular localization. Phosphatases: Classification, structure and regulationInhibitors. Kinases and Phosphatases in cancer
The PI3-kinase pathway (Jose Miguel Lizcano). The discovery of the PI3-kinase pathway. Role of the PI3-K signalling pathway on the activation of the AGC protein kinases Akt (PKB), and p70S6K.

mTOR and PDK1 signaling to the AGC kinases (Jose Ramon Bayascas). The PDK1 signalling network. Regulation of mTORC1 by nutrients. Insights into the regulation of mTORC2.

The LBK1-AMPK- mTOR pathway (Jose Miguel Lizcano). The signaling pathway regulated by the tumour suppressor protein kinase LKB1.

Tumor supresor genes (Jose Ramon Bayascas). Generalities. Tumor suppressor genes in cell cycle, signalling, DNA repair, DNA methylation and as microRNAs.

Cancer epigenetics (Nestor Gomez) DNA Methylation. Chromatin/Histonemodifications. Epigenetics in cancer and cell signalling.

Transciptional and translational control and cancer (Jose Manuel López)

Tumor heterogeneity (Joan Seoane, VHIO, Barcelona)

microRNAs in cancer (Miguel Segura, VHIR Barcelona) Application of microRNAs in diagnosis and treatment of cancer

Cancer and inflammation (Ana Cuenda, CNB, Madrid).

Mechanisms of resistance of cancer therapies (Violeta Serra; VHIO, Barcelona). Predicting pathways for breast cancer resistance to Pi3-K/Akt/mTOR inhibitors

Methodology

Oral lectures and student homework and preparation of different topics that will be discusses ath the classroom.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Directed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectures</td>
<td>45</td>
<td>1.8</td>
<td>9, 1, 4, 7, 6, 8</td>
</tr>
<tr>
<td>Type: Supervised</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervised work</td>
<td>52.5</td>
<td>2.1</td>
<td>9, 1, 2, 3, 4, 5, 7, 6, 8, 11, 12</td>
</tr>
<tr>
<td>Type: Autonomous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homework</td>
<td>125.5</td>
<td>5.02</td>
<td>9, 1, 3, 4, 5, 7, 6, 8, 10, 11, 12</td>
</tr>
</tbody>
</table>
Evaluation

Evaluation will be the result of:

1. Class attendance

2. Active participation/intcatchion during classes and seminars, by adressing questions and comments.

3. Oral presentation/defense of a journal paper.

4. Writing a scientific report

The student will not be evaluated ("Non-evaluable" mark) if misses more than 20% of the lectures, or in case she/he does not write a scientific project or she/he does not defend a journal paper.

Important: If plagiarism is detected in any of the works submitted, the student will fail the whole module!

Retake process: To be eligible for the retake process, the student should have been previously evaluated in a set of activities equaling at least two thirds of the final score of the course or module. Thus, the student will be graded as "No Avaluable" if the weighthin of all conducted evaluation activities is less than 67% of the final score.

Evaluation activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral criticism of a journal paper.</td>
<td>30%</td>
<td>1</td>
<td>0.04</td>
<td>9, 1, 2, 3, 4, 5, 7, 6, 8, 10, 11, 12</td>
</tr>
<tr>
<td>Oral presentation of a journal paper.</td>
<td>30%</td>
<td>1</td>
<td>0.04</td>
<td>9, 1, 2, 3, 4, 5, 7, 6, 8, 11, 12</td>
</tr>
<tr>
<td>Writing a scientific report</td>
<td>40%</td>
<td>0</td>
<td>0</td>
<td>9, 1, 2, 3, 5, 7, 6, 8, 10, 11, 12</td>
</tr>
</tbody>
</table>

Bibliography

Journals devoted to cancer research:

Cancer Cell

Nature Reviews Cancer

BBA Reviews on Cancer