

Plant System Biology

Code: 43867 ECTS Credits: 6

Degree	Туре	Year	Semester
4316231 Plant Biology, Genomics and Biotechnology	ОТ	0	1

Contact

Name: David Caparros Ruíz

Email: David.Caparros@uab.cat

Teachers

Amparo Monfort Vives
Ana Martin Hernandez

External teachers

Elena Monte
José Tomás Matus
Juan José López Moya
Manuel Rodriguez Concepción
Maria Lois
Martí Bernardo

Prerequisites

Basic knowledge of Genetics

Objectives and Contextualisation

To provide students with a comprehensive and current view of the techniques, fundamentals and applications of Plant Genomics and introduce systems biology of plants. The specific objectives include understanding the following aspects: the diversity and complexity of plant genomes, the techniques commonly used in genomic studies and applications to the genetic improvement of crop plants. Use of mathematics for predictive modelling through integration of different omics data.

Skills

- Apply knowledge of plant molecular genetics in different scientific and industrial areas.
- Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
- Develop critical reasoning in the area of study and in relation to the scientific and business environment.

Use of languages

Principal working language: english (eng)

- Identify and use Bio-Computer Science tools to be applied to the genetic, evolutionary and functional study of plants.
- Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Synthesize, and analyze alternatives and debate critically.
- Use and manage bibliographical information and computer resources in the area of study.
- Use scientific terminology to argue the results of research and present them in English both orally and in writing in an international environment.

Learning outcomes

- 1. Apply mathematical methods of analysis and predictive modelling through the integration of different types of omic experimental data.
- 2. Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
- 3. Develop critical reasoning in the area of study and in relation to the scientific and business environment.
- 4. Distinguish and apply the methods and techniques used normally in studies of genomics, phenomics, transcriptomics, proteomics and metabolomics.
- 5. Integrate knowledge and use it to make judgements in complex situations, with incomplete information, while keeping in mind social and ethical responsibilities.
- 6. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- 7. Synthesize, and analyze alternatives and debate critically.
- 8. Use and manage bibliographical information and computer resources in the area of study.
- 9. Use scientific terminology to argue the results of research and present them in English both orally and in writing in an international environment.

Content

Systems Biology: Concepts, methodology, and case studies using multiple omics.

Practical applications of methods and techniques in Plant genomics.

Application of Systems Biology in crop plant breeding.

Examples of using molecular markers in breeding; Importance of QTL.

Analysis and application of data arising from genomics and transcriptomics.

Analysis and application of data arising from proteomics, interactomics, and metabolomics.

Integrative analysis of the case study applied to crop plant breeding.

Methodology

Lectures and Expert talks

Problems and case studies

Preparation of reports

Personal study

Activities

Title	Hours	ECTS	Learning outcomes
Type: Directed			
Lectures and Expert Talks	11	0.44	1, 5
Problems and case studies	24	0.96	3, 4, 6, 9
Type: Supervised			
Preparation of reports	30	1.2	2, 7, 9
Type: Autonomous			
Personal study	84	3.36	8

Evaluation

Continuous evaluation 10%

Report 60%

Final Quiz 30%

Evaluation activities

Title	Weighting	Hours	ECTS	Learning outcomes
Continuous evaluation students' participation	10%	0	0	1, 3, 4, 5, 6
Final quiz	30%	1	0.04	6
Reports	60%	0	0	2, 7, 8, 9

Bibliography

Yunbi Xu Molecular Plant Breeding. CAB International Oxfordshire, UK disponible online a Biblioteca UAB :http://www.cabi.org/cabebooks/FullTextPDF/2010/20103101750.pdf

Articles and specific reviews recommended during classe