Laboratory and Virtuality in Primary Education

Code: 102088
ECTS Credits: 6

<table>
<thead>
<tr>
<th>Degree</th>
<th>Type</th>
<th>Year</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500798 Primary Education</td>
<td>OT</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Contact

Name: Cristina Simarro Rodriguez
Email: Cristina.Simarro.Rodriguez@uab.cat

Use of Languages

Principal working language: catalan (cat)
Some groups entirely in English: No
Some groups entirely in Catalan: Yes
Some groups entirely in Spanish: No

Prerequisites

Students should have already passed the two previous courses "Ensenyament i Aprenatatge del Coneixement del Medi Natural, Social i Cultural" in 2nd year and "Didàctica de les ciències experimental"s in 3rd year.

Objectives and Contextualisation

The course "Laboratori i Virtualitat" aims that participants, at the end of the course, will be able to:

1. Know and know how to use the different existing ICT for science teaching and learning (virtual tools, digital devices, mobile technology, etc.).
2. Understand the characteristics of the experimental work in primary education and how this can be supported by various ICT.
3. Incorporate ICT in science education, integrating them across all the educational planning.
4. Identify positive and negative aspects of each teaching ICT.
5. Provide reflections on the educational changes that implies introducing ICT in school.
6. Acquire criteria for selecting, using and designing virtual environments that foster scientific skills (exploration, observation, classification, prediction, variables control, etc.).
7. Familiarize with creative technologies as resources to work from technology to primary content

Competences

- Design and regulate learning spaces in contexts of diversity that take into account gender equality, equity and respect for human rights and observe the values of public education.
- Design, plan and evaluate education and learning processes, both individually and in collaboration with other teachers and professionals at the centre.
- Develop the functions of tutoring and guidance of pupils and their families, attending to the pupils own needs. Understand that a teacher's functions must be perfected and adapted in a lifelong manner to scientific, pedagogical and social changes.
- Foster reading and critical analysis of the texts in different scientific fields and cultural contents in the school curriculum.
- Generate innovative and competitive proposals in research and in professional activity.
- Know and apply information and communication technologies to classrooms.
• Know the curricular areas of Primary Education, the interdisciplinary relation between them, the evaluation criteria and the body of didactic knowledge regarding the respective procedures of education and learning.
• Reflect on classroom experiences in order to innovate and improve teaching work. Acquire skills and habits for autonomous and cooperative learning and promote it among pupils.
• Work in teams and with teams (in the same field or interdisciplinary).

Learning Outcomes

1. Identifying aspects common to all the experimental sciences and examining them in depth.
2. Identifying the difficulties in the teaching and learning of experimental sciences, and designing activities that respond to the diversity of students learning experiences.
3. Identifying, describing, and analysing the characteristics pertaining to management of the area of experimental sciences in the classroom, and the implementation of activities involving experimentation and the use of CLTs.
4. Knowing how to communicate and present an argument in science lessons.
5. Planning for scientific learning situations in contexts outside of the school.
6. Produce and apply resources related to the teaching and learning of experimental sciences.
7. Promoting the use of explanatory models.
8. Relating science with its technological applications, with its social impact on the didactic situations pertaining to the school.

Content

Section 1: ICT and scientific practice in classroom. Which ICT should we use, when, how and why?

Section 2: Digital tools for enriching the experimental activities in school: mobilephones, digital sensors, digital lenses and videos.

Section 3: Digital tools for working with virtual models in the classroom: animations, simulations, video games and virtual laboratories.

Section 4: Digital tools to communicate scientifically: interactive whiteboard and Scratch language.

Section 5: Digital tools to address the content of technology in the primary classroom (creative technologies)

Methodology

The course "Laboratori i Virtualitat" combines different kind of work: laboratory experimental activities, experimental field activities and computer room activities. Is particularly important work in small groups and whole-class discussions.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Directed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 1</td>
<td>5</td>
<td>0.2</td>
<td>6, 3, 5, 8, 4</td>
</tr>
<tr>
<td>Section 2</td>
<td>15</td>
<td>0.6</td>
<td>6, 3, 5, 8, 4</td>
</tr>
<tr>
<td>Section 3</td>
<td>15</td>
<td>0.6</td>
<td>6, 1, 2, 3, 5, 7, 8, 4</td>
</tr>
<tr>
<td>Section 4</td>
<td>10</td>
<td>0.4</td>
<td>6, 3, 5, 8, 4</td>
</tr>
<tr>
<td>Section 5</td>
<td>5</td>
<td>0.2</td>
<td>1, 5</td>
</tr>
</tbody>
</table>
Assessment

The evaluation of the subject Laboratory and Virtuality will be based on continuous evaluation and will have different sections:

- Class participation: 10%
- Individual deliveries (2 in total along the course): 10% each; 20% in total (18/09/19 and 21/01/20)
- Preparation of a classroom activity with ICT and TAC: 20% (microteaching throughout the course)
- Initial and final reflection: 10% (08/09/2019 and 29/01/2020)
- Digitization project of a school space: 20% (08/01/2020)
- Research project in the field of science with ICT tools and TAC: 20%. (29/01/2020)

It must be kept in mind that:

- According to the UAB regulations, plagiarism or copying of any work will be penalized with a 0 as a note of this work, losing the possibility of recovering it, whether it is an individual or group work (in this case, all members of the group will have a 0).
- Class attendance is mandatory: the student must attend all classes to be evaluated (20% of incidents are contemplated), otherwise it will be considered non-evaluable.

Assessment Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity with ICT 1</td>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>6, 3, 5, 8, 4</td>
</tr>
<tr>
<td>Classroom participation</td>
<td>10%</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Delivery of individual tasks</td>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>6, 3, 5, 8, 4</td>
</tr>
<tr>
<td>Digitization project</td>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>6, 3</td>
</tr>
<tr>
<td>Final project</td>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>6, 1, 2, 3, 5, 8, 4</td>
</tr>
<tr>
<td>Pre-Post Reflection</td>
<td>10%</td>
<td>0</td>
<td>0</td>
<td>6, 1, 2, 3, 5, 7, 8, 4</td>
</tr>
</tbody>
</table>

Bibliography

