Computer Applications
Code: 102397
ECTS Credits: 6

Degree
Principal working language: catalan (cat)
Some groups entirely in English: No
Some groups entirely in Catalan: Yes
Some groups entirely in Spanish: No

Contact
Name: Fco. J Guerrero Camacho
Email: FranciscoJavier.Guerrero@uab.cat

Teachers
Joan Albiol Sala
Julio Octavio Pérez Cañestro
Teresa Gea Leiva

Prerequisites
It is advisable to have basic math knowledge to successfully completed Linear Algebra and Calculus I courses.

Objectives and Contextualisation

The main aim of this course is to train the students in developing a basic understanding about computer science:

- Acquiring notions of using MS Excel and Matlab software to solve Chemical Engineering problems.
- Acquiring notions of numerical methods fundamentals to solve Chemical Engineering problems.

Skills
Apply acquired knowledge to solve common Chemical Engineering problems by using MS Excel and Matlab software. More in detail:

- Achieve practical knowledge in the application of MS Excel for solving Chemical Engineering problems.
- Achieve practical knowledge in MATLAB programming for solving Chemical Engineering problems.
- Achieve basic notions of most elementary numerical methods for solving Chemical Engineering problems.

Competences
• Demonstrate basic knowledge of the use and programming of computers, and apply the applicable IT resources to chemical engineering.
• Develop personal attitude.
• Develop personal work habits.

Learning Outcomes

1. Apply the most basic numerical methods to solve chemical engineering problems.
2. Describe the limitations of computers as digitally programmable systems.
3. Develop independent learning strategies.
4. Maintain a proactive and dynamic attitude with regard to one's own professional career, personal growth and continuing education. Have the will to overcome difficulties.
5. Manage available time and resources. Work in an organised manner.
6. Prevent and solve problems.
7. Use spreadsheets and numerical programming environments to solve chemical engineering problems.
8. Work autonomously.

Content

Students will be able to access to all learning content through Moodle platform.

Unit 1 Microsoft Excel. Applications to Chemical Engineering problems

1.1. Software working environment. Basic operators and formulae
1.2. Preprogramed functions in Excel
1.3. Graphical representations and regressions
1.4. Logical statements
1.5. Vectors and matrices
1.6. Numerical integration and derivation
1.7. MS Excel tools and complements: Solver

Unit 2 MATLAB. Programming language

2.1. Introduction and MATLAB characteristics
2.2. Operators with different variables, vectors and matrices.
2.3. Commands files and functions
2.4. Basic statements for programming in MATLAB: for … end, while …end, if…elseif….else…end
2.5. Graphs
2.6. Polynomial operators
2.7 Solving lineal and non-lineal systems of equations
2.8 Approximation and interpolation
2.9 Derivation and integration
2.10 Solving ordinary differential equations

Methodology

The course structure is:

a) Theory classes where basic concepts and methods fundamentals are explained.

b) Practical Classes (with computers) where theoretical concepts are developed through solving different problems by using MS Excel and Matlab.

Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning Outcomes</th>
</tr>
</thead>
</table>

2
Type: Directed

Practical classes with computer 36 1.44 1, 7
Theoretical classes 12 0.48 1, 2, 7

Type: Autonomous

Autonomous computer practise 70 2.8 1, 7
Autonomous study 23 0.92 1, 2, 7

Assessment

Different practical exercises will done along the academic year. The lack of assistance at these classes must be penalized for those students that are matriculated for the first time.

To pass de course it is mandatory to obtain an averaged mark less than 5.0/10 in the continued evaluation. If final mark is below 5.0/10, it is possible to pass de course by doing a test that includes all the academic contents and that is equal to the percentage of partial tests. To access to second-chance examination it is necessary that students have been evaluated in two thirds of total qualification tests. Thus, students that have not been evaluated more than 67% of total evalulative activities will get "Not evaluated" mark.

10% assistance mark will only be taken into account if averaged mark from partial tests are not less than 4.5/10.

High honours mark will be obtained with a final qualification not less than 9.0/10 and not over 5% of total matriculated students.

Notwithstanding anything to other disciplinary measures, those students that incur in different irregularities such as copy, plagiarism, allowing copying and so on., will obtain a 0 mark in the continued evaluation. If those irregularities are detected during second chance test, the academic course will be directly suspended.

Assessment Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Weighting</th>
<th>Hours</th>
<th>ECTS</th>
<th>Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial test 1</td>
<td>20%</td>
<td>3</td>
<td>0.12</td>
<td>1, 2, 5, 6, 8, 7</td>
</tr>
<tr>
<td>Partial test 2</td>
<td>35%</td>
<td>3</td>
<td>0.12</td>
<td>1, 2, 5, 6, 8, 7</td>
</tr>
<tr>
<td>Partial test 3</td>
<td>35%</td>
<td>3</td>
<td>0.12</td>
<td>1, 2, 5, 6, 8, 7</td>
</tr>
<tr>
<td>Student attitude and participation</td>
<td>10%</td>
<td>0</td>
<td>0</td>
<td>1, 2, 3, 5, 4, 6, 8, 7</td>
</tr>
</tbody>
</table>

Bibliography

Basic bibliography


Complementary bibliography

Links
http://www.mathworks.es/academia/student_center/tutorials/
http://www.mathworks.es/matlabcentral/
http://www.mathworks.es/academia/student_center/tutorials/