Synthetic Methods Code: 102527 ECTS Credits: 6 | Degree | Туре | Year | Semester | |-------------------|------|------|----------| | 2502444 Chemistry | ОВ | 3 | 1 | ### Contact ### Name: Marta Figueredo Galimany Email: Marta.Figueredo@uab.cat # Use of Languages Principal working language: catalan (cat) Some groups entirely in English: No Some groups entirely in Catalan: Yes Some groups entirely in Spanish: No # Other comments on languages Recomended text books and teaching guide may be in Englsih #### **Teachers** Roser Pleixats Rovira Joan Pau Bayón Rueda Adelina Vallribera Massó # **Prerequisites** Considering that the content of this course is a continuation and extension of the matter in Structure and Reactivity of Organic Compounds (SROC), we strongly recommend to pass this course previously to enrolling to Synthetic Methods. # **Objectives and Contextualisation** Deepen the study of the reactivity of organic compounds, considering the following aspects: - 1. Studying new methods for carbon-carbon and carbon-heteroatom bond formation and for functional group interconversion. - 2. Studying reaction mechanisms: kinetic and non-kinetic tools and theoretical models. - 3. Studying the influence of reaction conditions on selectivity and yield. - 4. Facilitating synthetic tools to the students to be able of designing synthetic paths of new organic compounds from simple, commercially available precursors. # Competences - Adapt to new situations. - Apply knowledge of chemistry to problem solving of a quantitative or qualitative nature in familiar and professional fields. - Be ethically committed. - Communicate orally and in writing in ones own language. - Have numerical calculation skills. - Learn autonomously. - Manage the organisation and planning of tasks. - Manage, analyse and synthesise information. - Obtain information, including by digital means. - Propose creative ideas and solutions. - Reason in a critical manner - Resolve problems and make decisions. - Show an understanding of the basic concepts, principles, theories and facts of the different areas of chemistry. - Show initiative and an enterprising spirit. - Show motivation for quality. - Show sensitivity for environmental issues. - Use IT to treat and present information. - Work in a team and show concern for interpersonal relations at work. # **Learning Outcomes** - 1. Adapt to new situations. - 2. Be ethically committed. - 3. Communicate orally and in writing in ones own language. - 4. Describe the different types of isomerism in organic compounds. - 5. Describe the mechanisms of the principal organic reactions and the various factors that affect them. - 6. Describe the most relevant synthetic methodologies for the inter-conversion of functional groups and the formation of simple and multiple carbon-carbon bonds. - 7. Determine and represent the configuration of chiral centres in organic compounds. - 8. Have numerical calculation skills. - 9. Identify the basic reactivity associated with the various functional organic groups. - 10. Identify the functional groups of the principal natural organic products and their most important reactions. - 11. Identify the isometric relationship between different structures of organic compounds. - 12. Learn autonomously. - 13. Manage the organisation and planning of tasks. - 14. Manage, analyse and synthesise information. - 15. Obtain information, including by digital means. - 16. Predict the reactivity of different organic functional groups under certain reaction conditions, as well as the structure of the products obtained. - 17. Propose creative ideas and solutions. - 18. Propose reaction mechanisms in processes involving organic compounds. - 19. Propose simple synthetic methods to obtain certain organic compounds from certain reagents. - 20. Reason in a critical manner - 21. Resolve problems and make decisions. - 22. Show initiative and an enterprising spirit. - 23. Show motivation for quality. - 24. Show sensitivity for environmental issues. - 25. Use IT to treat and present information. - 26. Work in a team and show concern for interpersonal relations at work. ### Content Lesson 1. C-C bond formation from compounds with active methylene e groups: Enolates formation. Regioselectivity. Kinetic and thermodynamic control. Elements influencing this process (base -counter ion-, solvent). C *versus* O reactivity. Formation of lithium enolates, silyl enol ethers, enamines and azaenolates; application to alkylation reactions. Directed aldol additions and acylations. The Knoevenagel reaction. Aldehyde alkylation using dithianes. The Mannich reaction. Conjugate additions. The Robinson's anelation. Lesson 2. C-C bond formation via organometallic reagents: General properties of organo-lithium and organo-magnesium compounds. The Felkin-Anh model. Organo-cuprates. The Reformatsky reaction. Palladium promoted reactions. Lesson 3. C=C bond formation: Thermal b-eliminations: pyrolysis of xantates, the Hofmann and Cope elimination reactions, elimination from selenoxides. The Wittig reaction: types of ylides, preparation, reactivity and stereoselectivity. The Horner-Wardsworth-Emmons reaction. Sulphur ylides: types, preparation and reactivity. The metathesis reaction of alkenes. Lesson 4. C-C bond formation through concerted reactions: Molecular frontier orbitals. The Woodward-Hoffman selection rules. Electrocyclic reactions. Thermal and photochemical [2+2] cycloadditions. The Diels-Alder reaction: region- and stereoselectivity. [3,3] Sigmatropic processes: Cope and Claisen rearrangements. Lesson 5. Reactions through highly reactive intermediates: Radical intermediates: addition of thiols to alkenes, cyclisations, pinacol formation. Cationic intermediates: the Wagner-Meerwein rearrangements, cyclisations, the pinacol rearrangement. Carbenes: preparation and reactivity, cyclopropanation, the Simmons-Smith reaction, the Wolff rearrangement, the Arndt-Eistert homologation. Nitrenes: preparation and reactivity, the Curtius, Schmidt, Hofmann and Beckmann rearrangements. Lesson 6. Reduction reactions: Hydrogenation:heterogeneous and homogenbeous catalysis. Boron and aluminum hydrides: selectivity. Reductive amination. The Meerwein-Pondorff-Verley reduction. Reduction by tributyltin hydride. Reduction with alkaline metals in solution: the Birch and Bouveault-Blanc reactions, acyloin condensation, dehalogenation. Deoxygenation: the Clemensen and Wolff-Kishner reactions. Desulphuration of dithianes. Lesson 7. Oxidation reactions: Oxidation of alcohols: Cr(VI) reagents, MnO₂, the Swern and Dess-Martin reactions. Oxidation of alkenes: KMnO₄, OsO₄, peroxides and peracids, the Sharpless asymmetric epoxidation, oxidative cleavage. : Oxidation of aldehydes and ketones: to carboxylic acids, alpha-carbonyl oxidation, the Baeyer-Villiger reaction, the haloform reaction. Allylic oxidation. Lesson 8. Methods to investigate reaction mechanisms. Effect of the molecular structure on reactivity: Kinetic and thermodynamic data. The Curtin-Hammett principle. Kinetic isotope effect. Introduction to Hammett's correlations. Non-kinetic methods: product identification; isotopic labeling; crossing experiments; stereochemical data; detection/trapping of intermediates. Lesson 9. Organic Synthesis: Introduction to retrosynthetic analysis. The synthon concept. Lineal *versus* convergent synthesis. Chemo-, region- and stereoselectivity. Functional group protection. ### Methodology The Virtual Campus will be used for delivering the necessary material to the students, according to the professor criterion. This material will include: the course program, exercises and problems to be solved, copies of the classroom presentations, etc. Along the course, the student should participate in various formative activities, with the aim of acquiring the established knowledge and skills. Three kind of activities will be developed: #### 1.- Master classes In the master classes, the professor will mainly explain the basic knowledges of the matter, in which the students should later worked on individually, consulting the appropriate bibliography. The active participation of the students will be intended, through the formulation of appropriate questions that they should try to answer. ### 2.- Exercise and problem classes Over the course, the student will receive a collection of exercises and problems to be solved autonomously. Their solution proposals will be discussed in the class. Special emphasis will be done in their active participation. 3.- Preparation of exercises to hand in (individual work) Over the course, the professors will distribute some exercises that should be solved by the students and returned in due date. #### **Activities** | Title | Hours | ECTS | Learning Outcomes | |--------------------------------|-------|------|---| | Type: Directed | | | | | Master classes | 38 | 1.52 | 1, 12, 3, 22, 23, 4, 5, 6, 7, 13, 14, 10, 9, 11, 2, 24, 15, 16, 17, 18, 19, 20, 26, 25 | | Problem and exersice classes | 12 | 0.48 | 1, 12, 3, 22, 23, 4, 5, 6, 7, 13, 14, 10, 9, 11, 2, 24, 15, 16, 17, 18, 19, 20, 21, 8, 26, 25 | | Type: Autonomous | | | | | Preparing exercises to hand in | 4 | 0.16 | 1, 12, 3, 22, 23, 4, 5, 6, 7, 13, 14, 10, 9, 11, 2, 24, 15, 16, 17, 18, 19, 20, 21, 8, 26, 25 | | Studing, problem solving | 82 | 3.28 | | #### **Assessment** With the aim of encouraging the constant student work to favor the learning, a continuous evaluation will be applied. This methodology will inform the professor about the content's assimilation by the student as well as their ability to apply them to problem solving. The evaluation will be individual. #### Exercise handing in: Along the course, on professor criterion, the students will have to solve some exercises in class or hand them in at the scheduled date. These exercises may include matter of the previous Organic Chemistry courses. Overall, this work will contribute in a 10% to the final mark of the continuous evaluation. In order to evaluate the knowledge related to the master classes and the problem-solving ability of the students, two partial exams will be performed. #### First Partial Exam This exam will evaluate the contents of approximately a 50% of the course program. The exam will formulate questions either theoretical or practical (problems) and will contribute in a 45% to the final mark of the continuous evaluation. In this exam a minimum of 5 points out of 10 must be obtained to be able to average the other qualifications of the evaluation. # Second Partial Exam This exam will evaluate the contents of approximately a 50% of the course program. The exam will formulate questions either theoretical or practical (problems) and will contribute in a 45% to the final mark of the continuous evaluation. In this exam a minimum of 5 points out of 10 must be obtained to be able to average the other qualifications of the evaluation. To pass the course in the first instance, it will be mandatory obtaining 5 points out of 10 after averaging all the qualifications resulting of the continuous evaluation (2 exams and exercises handing in). #### Second-chance Examination The students who did not pass the continuous evaluation will have the opportunity to perform second-chance exam, which will have two different parts, corresponding to the matter of the first and second partial exams, respectively.* To pass the course, it will be mandatory obtaining 5 points out of 10 in each of the parts of the second-chance exam and the final qualification will be, in this case, the weighted average between the mark of this exam (45% for each part) and the mark of the exercises (10%). To be eligible for the second-chance exam, any student should have been previously evaluated in a set of activities corresponding to a minimum of 2/3 of the overall qualification of the course. Hence, it will be mandatory to make the two partial exams to be entitled to the recovery of any of them. ### **Assessment Activities** | Title | Weighting | Hours | ECTS | Learning Outcomes | |---------------------------------|-----------|-------|------|---| | Exercise handing in | 10% | 4 | 0.16 | 1, 12, 3, 22, 23, 4, 5, 6, 7, 13, 14, 10, 9, 11, 2, 24, 15, 16, 17, 18, 19, 20, 21, 26, 25 | | Partial and second-chance exams | 90% | 10 | 0.4 | 1, 12, 3, 22, 23, 4, 5, 6, 7, 13, 14, 10, 9, 11, 2, 24, 15, 16, 17, 18, 19, 20, 21, 8, 26, 25 | # **Bibliography** Text books: Organic Chemistry (2nd Ed) de J. Clayden, Nick Greeves, S. Warren and P. Wothers. Oxford U. P. Oxford New York, 2012. Organic Chemistry (11th Ed) de T.W. G. Solomons and C. B. Fryhle. John Wiley & Sons, Inc. New York, 2013. Organic Chemistry: Structure and function (6th Edition) de K.P.C. Vollhardt and N.E.Schore, W.H. Freeman and Company New York, 2010. Advanced Organic Chemistry (6th Edition) de M.B. Smith and J. March. John Wiley & Sons, INc. New York, 2013. Web links: Dictionary of Chemical Terms: http://goldbook.iupac.org/ Nomenclature and Structures: http://www.freechemsketch.com/ ChemDraw: http://sitelicense.cambridgesoft.com/sitelicense.cfm?sid=1111 e-mail: xxx@campus.uab.es Organic Chemistry Portal:www.organic-chemistry.org ^{*} The students who did not pass the continuous evaluation, but have obtained a minimum of 6 points out of 10 in one of the partial exams, will be exempt of doing the corresponding part of the second-chance exam and will keep the same mark for averaging with the other marks of the evaluation.