
Use of Languages

NoSome groups entirely in Spanish:

YesSome groups entirely in Catalan:

NoSome groups entirely in English:

catalan (cat)Principal working language:

Contact

Ernest.Valveny@uab.catEmail:

Ernest Valveny LlobetName:

2019/2020

Programming Methodology

Code: 102764
ECTS Credits: 6

Degree Type Year Semester

2502441 Computer Engineering FB 1 2

Prerequisites

There are no prerequisites. However, students should be familiar with the most basic programming structures.
Thus, it is recommended for students to have taken the course "Fonaments d'Informàtica".

Objectives and Contextualisation

This subject is part of the Computer Science subject and it should be regarded as the logical continuation of
the programming part of the Fundamentals of Computer Science subject. The basic objective is to deepen in
the basic notions of programming introduced in Fundamentals of Computer Science and to complete them with
other programming concepts that should allow the student to have complete vision of the imperative
programming and the principles of object-oriented programming.

In this way, the objectives for this course are the following:

Understanding the life cycle of the software: analysis (understand the problem), design (propose a
solution to the problem), implementation (coding the solution in a programming language), test (carrying
out a systematic test to ensure the correctness of the implemented solution).
Understanding the concept of algorithm as a tool for solving problems with the computer, learn the
fundamental concept of algorithm, understand the main structures of imperative programming and use
them correctly to solve algorithmic problems of a certain complexity.
Knowing the different structures to represent information within the algorithms, both static data types
(tables, records and strings) and dynamic data types (stacks, tails, lists), to be able to use the most
appropriate data structure to represent the associated information an algorithmic problem.
Understanding and correctly applying the basic principles of object-oriented programming: class
concept and data encapsulation.
To provide the student with the ability to design algorithms for the resolution of complex problems,
introducing progressively and systematically a rigorous and structured programming methodology,
based fundamentally on the technique of descending design.
Programming in a real programming language and knowing the different stages of development of a
program: writing, compilation and linking, execution and testing.
Developing the programs following a coding style tending to achieve quality programs. Such a coding
style include rules that facilitate the understanding of the code, such as the use of comments, the
indentation of the code, the use of appropriate names for variables and functions, etc.

Competences
1

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

Competences

Acquire personal work habits.
Acquire thinking habits.
Have basic knowledge of the use and programming of computers, operating systems, databases and
computer programs with applications to engineering.
Have the capacity to understand and master the basic concepts of discreet mathematics, logic,
computational algorithms and complexity, and their application to the resolution of engineering
problems.
Know the basic materials and technologies to enable the learning and development of new methods
and technologies, as well as those that that provide large-scale versatility to adapt to new situations.

Learning Outcomes

Develop a mode of thought and critical reasoning.
Know and be able to use operating systems, databases and programs that are commonly used in
engineering.
Know the basic principles of the structure and programming of computers.
Make ones own decisions.
Manage time and resources available. Work in an organized manner .
Recognise and identify the methods, systems and technologies of computer engineering.
Show the capacity for the organisation of information in files and databases.
Show the capacity to design algorithms and analyse their computational complexity.
Show the capacity to display information and program computers.
Understand and master algorithms and computational complexity and their application to problem
solving.

Content

Topic 1: Introduction to object-oriented programming

• Review of the basic programming structures: conditional and iterative structures, functions and procedures,
tables, matrices, registers.

• Introduction to the concept of class. Methods and attributes. Private and public part. Constructors and
destructors. Data composition. Composition.

• Persistence and serialization of objects. Reading and writing files.

Topic 2: Dynamic data structures

• Motivation of dynamic data structures.

• The concept of pointer. Operations with pointers.

• Dynamic objects.

• Definition, representation and implementation of dynamic data structures: lists, stacks and queues.

• Use of dynamic data structures.

Topic 3: Cost analysis and complexity

Methodology

The teaching methodology of the course is based on the principle that "programming is the only way to learn to
program" and, therefore, will be mainly focused on the practical work of the student. Lectures will introduce the
theoretical contents of the subject, from a very practical perspective using examples and exercises and
programming problems that must be solved in class directly with the computer. On the other hand, a

2

programming problems that must be solved in class directly with the computer. On the other hand, a
programming project will have to be developed mainly autonomously throughout the course (with follow-up and
control by the teacher in specific sessions). It will involve applying almost all concepts and programming tools
introduced in lectures to solving a complex real problem. In addition, a set of exercises will have to be solved
individually throughout the course (some of them will be solved and discussed in lectures). They should serve
to understand, integrate and apply the concepts developed in lectures. In all the activities of the course
(lectures, problems and project) the C++ programming language will be used.

In lectures, the course will not distinguish between theory, problem and practical lectures. Lectures will be
organized in four hours per week in groups of around 40 students. Each registration group is divided into two
groups of about 40 students for lectures. The division of students between the two groups will be done at the
beginning of the semester and will be fixed for the whole course. The sessions will be held in a classroom with
computers to facilitate the practical work of the student. It is recommended that the student bring his own
laptop to class if he has one.

In the lectures, the concepts of the syllabus of the subject will be introduced. In some cases, explanatory
videos may be made available to the student to watch before the class session. Lectures will have a very
practical approach with examples and exercises that will be presented to students to facilitate understanding
and learning of the concepts. These exercises will be carried out anddiscussed during the session and will be
used to introduce the contents of the subject and see its practical application.

The student must complete the lectures with autonomous personal work to do the exercises that are proposed
and that should serve to understand the contents of the course. It must be borne in mind that the syllabus of
the subject has a logical continuity throughout the course, so that to follow correctly a class it is necessary to
understand what was explained in the previous sessions. Some of these exercises must be submitted
individually as part of the evaluation of the course.

In addition, students must develop in groups of 2 people a programming project that will be developed
autonomously throughout the course apart from the lectures. The programming project will allow addressing a
programming problem of a certain complexity that integrates most of the concepts explained during the course.
During the course, some lectures sessions will be devoted to the control, monitoring and evaluation of the work
carried out by the student in the programming project.

The management of the course will be done through the platform Caronte (http://caronte.uab.cat/), which will
be used to view the materials, manage the groups of the project, submitting exercises, publish evaluation
marks, communicate with teachers, etc.

Transversal Competences

• T01.01 Develop critical thinking and reasoning. This competence will be developed during the lectures, from
the presentation and discussion of examples and practical cases. It will be taken into account in the evaluation
of students problem submission.

• T02.03 Manage time and available resources. Work in an organized way. This competence will be developed
mainly thorugh the programming project. The student aims to develop the project autonomously and must be
able to organize the time and resources to achieve this goal. It will be evaluated in the follow-up sessions of
the project.

• T02.05 Make their own decisions. This competence will be developed during the programming project in
which the student must choose and take the best options to complete the project. It will be evaluated in the
follow-up sessions of the project.

Activities

Title Hours ECTS Learning Outcomes

Type: Directed

Lectures 50 2 10, 3, 7, 9, 8, 1, 6

3

Type: Supervised

Follow-up of the implementation of the programming project 1 0.04 8, 1, 5, 4

Type: Autonomous

Implementing a programming project 48 1.92 2, 7, 9, 8, 5, 4

Individual study 11 0.44 3, 6

Solving problems 36 1.44 7, 9, 8, 5

Assessment

Subject assesement will take into account three types of assesement activities: resolution of problems,
individual assesement and programming project. The final grade of the subject is obtained by combining the
grade of these 3 activities as follows:

Final Grade = (0.3 * Continuous assesement) + (0.3 * Project) + (0.4 * Individual assesement)

Continuous assesement: this section includes the assesement of the exercises that are proposed
throughout the course and other activities that are carried out in the lectures or are proposed to be
delivered on the Caronte platform.
A is required in this activity in order to pass the subject.minimum grade of 5
The exercises that are not delivered within the deadline or that are suspended can be atre-delivered
any time during the course of the subject, with a in thebefore the final exam date reduction of the 20%
grade.

Individual assesement: this section includes the results of the individual tests that will be done
throughout the course. There will be two partial tests that will be done during the period of lectures in
the course during class time and a final test during the official exam period. This final test will permit to
compensate any of the partial tests and will only have to be done by students who have not passed any
of the two partial test. If one of the two partial test has been passed, but the other does not, in this test
only the part of the subject corresponding to the partial test that has not been passed must be
re-assesed.

A is required in each of the in order to pass the subject.minimum grade of 4.5 two partial tests

The will be the average of the two partial tests:final grade

Individual assesement = (0.5 * Partial Test 1) + (0.5 * Partial Test 2)

A is required in the final grade of the individual assesement in order to pass theminimum grade of 5
subject.

Project: includes the assesement of all the work carried out in the programming project: the two
deliveries of the project (a partial delivery in the middle of the course and the final delivery) and the
conitnuous monitoring of the project that will be done throughout the course.
A is required in the in order to pass the subject.minimum grade of 5 final delivery of the project
A is required in the in order to pass the subject.minimum grade of 5 overall grade of the project
The of the project can be if the project grade is> = 3 and the individualfinal delivery re-assesed
assesement grade is> = 5.

Not assesed: A student will be considered not assesed (NA) if he does not submit at least 50% of the
deliveries of exercises and does not do any of the evaluation tests: partial test 1, partial test 2, final test, final
delivery of the project.

4

Suspended: If the final grade is equal to or greater than 5 but the student does not reach the minimum required
in any of the assesement activities, the final grade will be suspended and , the grade in the Transcript of
Records (ToR) will be 4.5.

Pass the course with honours: In order to pass the course with honours, the final grade must be a 9.0 or
higher. Because the number of students with this distinction cannot exceed 5% of the number of students
enrolled in the course, this distinction will be awarded to whoever has the highest final grade.

Compensations: For the students who are following the course for the second time or more, the project grade
of the previous year can be compensated if these conditions are met:

The final grade of the project of the previous year is greater than or equal to 7
The grade of the individual assesement of the previous year is greater than or equal to 3.

Review of assesement: For each assesement activity, a place, date and time of review will be indicated
allowing students to review the activity with the lecturer. In this context, students may discuss the activity grade
awarded by the lecturers responsible for the subject. If students do not take part in this review, no further
opportunity will be made available.

Important note: copies and plagiarism

Notwithstanding other disciplinary measures deemed appropriate, and in accordance with the academic
regulations in force, assessment activities will receive a zero whenever a student commits academic
irregularities that may alter such assessment. Assessment activities graded in this way and by this procedure
will not be re-assessable. If passing the assessment activity or activities in question is required to pass the
subject, the awarding of a zero for disciplinary measures will also entail a direct fail for the subject, with no
opportunity to re-assess this in the same academic year. Irregularities contemplated in this procedure include,
among others:

the total or partial copying of a practical exercise, report, or any other evaluation activity;
allowing others to copy;
presenting group work that has not been done entirely by the members of the group;
presenting any materials prepared by a third party as one's own work, even if these materials are
translations or adaptations, including work that is not original or exclusively that of the student;
having communication devices (such as mobile phones, smart watches, etc.) accessible during
theoretical-practical assessment tests (individual exams).
talk with peers during the theoretical evaluation tests-individual practices (exams);
copy or attempt to copy other students during the theoretical-practical assessment tests (exams);
use or attempt to use writings related to the subject during the performance of theoretical-practical
assessment tests (exams), when these have not been explicitly allowed.

In these cases, the grade in the Transcript of Records (ToR) will be the lowest value between 3.0 and the
weighted average grade (and therefore re-assessment will not be possible).In the assesment of problems and
the project, tools to detect code plagiarism will be used.

Note on the planning of the assesment activities: Continuous-assessment dates will be published on Caronte
and on the presentation slides. Specific programming may change when necessary. Any such modification will
always be communicated to students through Caronte, which is the usual communication platform between
lecturers and students.

Assessment Activities

Title Weighting Hours ECTS Learning Outcomes

Individual evaluation 40% 4 0.16 3, 6

Problem submission 30% 0 0 10, 7, 9, 8, 1, 5

5

Programming project 30% 0 0 10, 2, 7, 9, 8, 5, 4

Bibliography

http://www.cplusplus.com/ : The C++ Resources Network
https://es.wikibooks.org/wiki/Programaci%C3%B3n_en_C%2B%2B: Programación en C++ - Wikilibros
https://www.sololearn.com/: SoloLearn
L. Joyanes, I. Zahonero: , Mc Graw-Hill,Programación en C: metodología, estructura de datos y objetos
2001.
B. Eckel. , Prentice-Hall, 1999.Thinking in C++, Volume 1: Introduction to Standard C++
B. Eckel. , Prentice-Hall, 1999.Thinking in C++, Volume 2: Standard Libraries and Advanced Topics
F. Xhafa, P. Vázquez, J. Marco, X. Molinero, A. Martín: .Programación en C++ para ingenieros
Thomson, 2006.
E. Valveny, R. Benavente, A. Lapedriza, M. Ferrer, J. García: Programació en Llenguatge C. Amb 56

. Servei publicacions UAB, 2009.problemes resolts i comentats
L. Joyanes, A. Castillo, L. Sánchez, I. Zahonero: , Mc Graw-Hill,Programación en C: libro de problemas
2002.
B.W. Kernighan, D.M. Ritchie: . 2ª Edición, Prentice Hall, 1986.El lenguaje de programación C
B.W. Kernighan, R. Pike: . Pearson Educación, 2000.La Práctica de la Programación
M. Jesús Marco Galindo et al. . Publicacions UOC, 2008.Fonaments de Programació
L. Joyanes Aguilar : . 3ªFundamentos de Programación: Algoritmos, Estructuras de Datos y Objetos
Edición, Mc. Graw-Hill, 2003.
J. Pujol: . Servei de Publicacions de la UAB, 1996.Algorismes i Programes

6

http://www.cplusplus.com/
https://es.wikibooks.org/wiki/Programaci%C3%B3n_en_C++
https://www.sololearn.com/

