

Astrofísica Estelar y Planetaria

Código: 42857 Créditos ECTS: 9

Titulación	Tipo	Curso	Semestre
4313861 Física de Altas Energias, Astrofísica y Cosmología/High Energy Physics, Astrophysics and Cosmology	ОТ	0	1

Contacto Uso de idiomas

Nombre: Jordi Isern Vilaboy Lengua vehicular mayoritaria: inglés (eng)

Correo electrónico: Jordi.Isern.Vilaboy@uab.cat

Equipo docente

Jordi Isern Vilaboy Josep Maria Trigo Rodríguez Aldo Marcelo Serenelli Gemma Busquet

Prerequisitos

Se supone que los estudiantes tienen un conocimiento básico de Mecánica, Clásica y Cuántica, Termodinámica.

Mecánica Estadística y Física Atómica y Nuclear.

Varios aspectos específicos, como el transporte de energía, se presentan durante el curso.

Objetivos y contextualización

El objetivo de este módulo es proporcionar los conocimientos básicos sobre dos ramas fundamentales de la astrofísica moderna: estructura y evolución de las estrellas y estructura y evolución de los planetas y sistemas planetarios.

Competencias

- Aplicar los principios fundamentales a áreas particulares como la física de partículas, la astrofísica de estrellas, planetas y galaxias, la cosmología o la física más allá del Modelo Estándar.
- Conocer las bases de temas seleccionados de carácter avanzado en la frontera de la física de altas energías, astrofísica y cosmología, y aplicarlos consistentemente.
- Formular y abordar problemas físicos, tanto si son abiertos como si están mejor definidos, identificando los principios más relevantes y usando aproximaciones, si procede, para llegar a una solución que se ha de presentar explicitando las suposiciones y las aproximaciones.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- Razonar críticamente, tener capacidad analítica, usar correctamente el lenguaje técnico y elaborar argumentos lógicos.

Resultados de aprendizaje

- 1. Analizar en detalle la evolución de sistemas binarios compactos.
- 2. Calcular la evolución de una estrella tipo.
- 3. Comprender las bases de la astrofísica estelar y planetaria.
- 4. Comprender los procesos de formación de estrellas.
- 5. Entender los detalles del interior del sol.
- 6. Entender los mecanismos de formación de sistemas planetarios.
- 7. Reconocer los distintos estados de la evolución estelar.

Contenido

Propiedades fundamentales de las estrellas atmósferas estelares interiores estelares Formación estelar de médium interestelar evolución estelar Evolución de los sistemas binarios estrellas variables el sol planetas

Metodología

Classes teóricas y ejercicios.

Tareas en el aula y en casa.

Actividades

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
clases teóricas	56	2,24	1, 2, 4, 3, 5, 6, 7
Tipo: Autónomas			
Discussiones, grupos de trabajo, grups de ejercicios	62	2,48	1, 2, 4, 3, 5, 6, 7
estudio de los elementos teóricos fundamentales	64	2,56	1, 2, 4, 3, 5, 6, 7

Evaluación

Un examen de todos los contenidos, tareas sobre todos los contenidos, exposición oral sobre un tema seleccionado

Actividades de evaluación

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Ejercicios autónomos	25%	20	0,8	1, 2, 4, 3, 5, 6, 7
Exposición oral de un tema escogido	25%	20	0,8	1, 2, 4, 3, 5, 6, 7

Bibliografía

Physics, formation and evolution of rotating stars. A. Maeder. Springer

Stellar interiors. Physical principles, structure and evolution. C. J. Hansen & S. D. Kawaler. Springer-Verlag

The physics of stars. A. C. Phillips. John Wiley & Sons