

Plant Nutrition and Metabolism

Code: 100796 ECTS Credits: 6

Degree	Туре	Year	Semester
2500250 Biology	ОВ	2	2

The proposed teaching and assessment methodology that appear in the guide may be subject to changes as a result of the restrictions to face-to-face class attendance imposed by the health authorities.

Contact

Use of Languages

Name: Carlota Poschenrieder Wiens

Email: Charlotte.Poschenrieder@uab.cat

Principal working language: spanish (spa)

Some groups entirely in English: No Some groups entirely in Catalan: No

Some groups entirely in Spanish: No

Other comments on languages

Use of English in homeworks and seminars is positively evaluated

Teachers

Isabel Corrales Pinart

Prerequisites

none

Objectives and Contextualisation

The subject introduces students to the functional processes of mineral nutrition and metabolism of plants. An inte

The main training objectives of this subject are:

Describe the functional mechanisms of plants and their regulation throug Integrate the functional processes of the plants from the different organiz Identify the crucial discoveries in the history of Plant Physiology and eval

Competences

- Apply statistical and computer resources to the interpretation of data.
- Be able to analyse and synthesise
- Be able to organise and plan.
- Carry out functional tests and determine, assess and interpret vital parameters.
- Develop a historical vision of biology.

- Students must be capable of collecting and interpreting relevant data (usually within their area of study) in order to make statements that reflect social, scientific or ethical relevant issues.
- Students must be capable of communicating information, ideas, problems and solutions to both specialised and non-specialised audiences.
- Students must develop the necessary learning skills to undertake further training with a high degree of autonomy.
- Understand the processes that determine the functioning of living beings in each of their levels of organisation.

Learning Outcomes

- 1. Apply statistical and computer resources to the interpretation of data.
- 2. Be able to analyse and synthesise.
- 3. Be able to organise and plan.
- 4. Consolidate understanding of physiological processes in plants with the aim of putting this to practical use.
- 5. Describe the functional mechanisms of plants and how these are regulated by internal and external factors.
- 6. Identify the crucial discoveries in the history of plant physiology and assess their significance in the subsequent development of the discipline.
- 7. Integrate the functional processes of plants, from the different levels of organisation to the whole plant organism.
- 8. Students must be capable of collecting and interpreting relevant data (usually within their area of study) in order to make statements that reflect social, scientific or ethical relevant issues.
- 9. Students must be capable of communicating information, ideas, problems and solutions to both specialised and non-specialised audiences.
- 10. Students must develop the necessary learning skills to undertake further training with a high degree of autonomy.

Content

Lectures

1st part

- Concept of Plant Physiology, history, sources of information
- Distinguishing characteristics of plant cells. Vacuole and cell wall
- Water relations. Concept of water potential and its components
- Absorption and transport of water
- Transpiration and stomata regulation
- Phloem transport
- Mineral nutrition. Concept of essentiality. Functions of mineral nutrients
- Passive absorption and active absorption of mineral nutrients
- Nitrogen, symbiotic fixation of atmospheric nitrogen
 2nd part
- Photosynthesis. Concept and History
- Light and photosynthetic pigments
- Photosynthetic electron transport and photophosphorylation
- Reductive assimilation of CO2, Calvin cycle
- Photorespiration
- C4 and CAM Plants
- Reductive assimilation of nitrogen and sulfur
- Regulation of photosynthesis

- Distinctive characteristics of plant respiration; Alternative oxidase
- Secondary metabolism

Laboratory Practices

- Water and osmotic relations of the plant cell. Plasmolysis
- Mineral nutrition: Determination of the inorganic fraction
- Carbon photosynthesis: measurement methods. Hill Reaction
- Nitrogen photosynthesis: nitrate reductase
- Secondary metabolism: identification of compounds

*Unless the requirements enforced by t	he health authorities demand a prioritization or reduction of these content
Methodology	
Lectures	During the lectures the professor explains the fundamental mechanisms
The methodology is mainly of verbal co	mmunication, accompanied by visual schemes. Teacher's direct question Seminars The main purpose of the seminars in this subject is to promote the know
Teaching methodology is based on the	exposition and discussion of case studies and / or problems posed by the
	Laboratory practices Some of the topics covered in the theory class are visualized through lab

The student will get familiar with protocols and basic techniques of a Plant Physiology Lab. and learns to repres

The student will gain access the protocols and practical guides through the Virtual Campus.

Tutoring

In tutorials in groups and individuals, the teacher tries to help the student

*The proposed teaching methodology may experience some modifications depending on the restrictions to face-t

Activities

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Lab practice	12	0.48	1, 4, 5, 7, 2, 3
Lectures	32	1.28	5, 6, 7, 2
Seminars	6	0.24	5, 6, 7, 9, 8, 2
Type: Supervised			
Group tutorials	3	0.12	1, 5, 7, 2
Personel tutorials	1.5	0.06	1, 5, 7, 2
Type: Autonomous			
Personal study	62	2.48	1, 5, 6, 7, 10, 8, 2
Preparation of homework and/or seminars	20	0.8	5, 6, 7, 10, 9, 2, 3
Preparation of lab practice report	10	0.4	1, 4, 5, 7, 8, 2

Assessment

Written exams that include the evaluation of the contents of the lectures.

There will be two eliminatory tests corresponding to each of the parts in v

To be able to pass the subject, a minimum grade of 5 must be obtained in each of these parts. The weight of eac

To improve the mark, or to pass the marks below 5, you can do a recove

In the case of submitting to improve the mark of a partial exam, the note of the recovery exam is counted.

To be eligible for this retake process, the student should have been previously evaluated in a set of activities equ

The laboratory practices will be evaluated by means of an exam the last

Attendance is mandatory. In the event of non-justified assistance, it can be recovered through assistance to another participation in the seminars and the quality of the works and / or probler. The subject will be approved when the student fulfills the conditions to be Students who can not attend an individual assessment test for justified continuous every year a voluntary activity is proposed with which you can achieve a

Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Evaluation of lab practice and seminar	30%	0.5	0.02	1, 4, 5, 7, 10, 9, 8, 2, 3
Examinations of lecture programs	70%	3	0.12	4, 5, 6, 7, 9, 2

Bibliography

BARCELÓ, J.; NICOLÁS, G.; SABATER, B.; SÁNCHEZ, R.: Fisiologia Vegetal. Pirámide. Madrid (2009).

MOHR, H.; SCHOPFER, P.: Plant Physiology. Springer Verlag, Berlin (1995).

SALISBURY, F.B.; ROS, C. W.: *Plant Physiology*, 4th edition. Wadsworth Publ. Company, Belmont, California (1992).

SCHOPFER, P.; BRENNICKE, A.: Pflanzenphysiologie, 7ª edición Elsevier, Spektrum (2010).

TAIZ,L.; ZEIGER, Moller IE, Murphy A.: *Plant Physiology and Development*, 6^a Ed. Sinauer Associates, Sunderland (2010)

http://6e.plantphys.net/