
Use of Languages

NoSome groups entirely in Spanish:

YesSome groups entirely in Catalan:

NoSome groups entirely in English:

catalan (cat)Principal working language:

Contact

Robert.Benavente@uab.catEmail:

Robert Benavente VidalName:

2020/2021

Foundations of Programming

Code: 104337
ECTS Credits: 6

Degree Type Year Semester

2503758 Data Engineering FB 1 1

The proposed teaching and assessment methodology that appear in the guide may be subject to changes as a
result of the restrictions to face-to-face class attendance imposed by the health authorities.

Prerequisites

Given that this is an introductory course, it is assumed that students do not have any prior knowledge of the
subject.

However, it is advisable to

have a basic knowledge of any basic platform (windows, mac or linux)
have access to a computer (ideally, a laptop)

Objectives and Contextualisation

This subject has a general and introductory character to programming. The study of the methodological
aspects of programming and the learning of a high level language will be deepened. Therefore, the general
objectives proposed for the subject are the following:

Understanding the life cycle of the software: analysis of the problem (understanding what is being
asked), design (proposing a solution to the problem), implementation (coding in a programming
language the chosen solution), and test (carrying out a test in a systematic way to ensure the
correctness of the implemented solution).
Providing the student with the ability to design algorithms for problem solving, introducing a rigorous
and structured programming methodology in a progressive and systematic way (based on the technique
of descending algorithm design).
Introducing the student to a real programming language. It is intended that the student perceives the
difference between the flexibility of the pseudo-algorithmic notation used in the first topics and the strict
syntax of a real programming language in different aspects: lexical (valid words of the language),
syntactic (rules to combine them) and semantic (meaning of them).
Making the student familiar with developing programs following some norms of style tending to obtain
high quality programs. These style rules include those that facilitate the comprehension of the code,
such as the use of comments, the indentation of the code, the use of appropriate names for data, etc.

Competences

1

1.
2.
3.
4.
5.
6.
7.

Design efficient algorithmic solutions to computational problems, implement them in the form of robust
software developments which are structured and easy to maintain, and verify their validity.
Make a critical evaluation of work carried out.
Plan and manage the available time and resources.
Students must have and understand knowledge of an area of study built on the basis of general
secondary education, and while it relies on some advanced textbooks it also includes some aspects
coming from the forefront of its field of study.

Learning Outcomes

Apply strategies for debugging, testing and correcting programmes.
Apply the basic principles of computer structure and programming.
Develop programmes that are well documented, using a good programming style.
Implement medium-difficulty algorithmic problems in a programming language.
Make a critical evaluation of work carried out.
Plan and manage the available time and resources.
Students must have and understand knowledge of an area of study built on the basis of general
secondary education, and while it relies on some advanced textbooks it also includes some aspects
coming from the forefront of its field of study.

Content

Unit 1: Introduction to the computer

History. Functional structure of the computer. Programs / instructions. Conceptual levels of the computer.

Unit 2: Problem solving: introduction to algorithmics and programming.

Introduction to problem solving. Algorithm concept Phases in the development of algorithms. Programming as
an engineering discipline. Software life cycle. Basic elements of an algorithm. Tools for the representation of
algorithms. Programming languages. Classification. Language translators: Compilers and interpreters.

Unit 3: Basic concepts and control structures

Definition of variables and constants. Type of fundamental data. Sequential structure. Selection or conditional
structures. Iterative or repetitive structures.

Unit 4: Data structures

Unidimensional arrays: strings, tuples and lists. Search and traverse.

Unit 5: Subprograms

The concept of subprogram as an abstraction of operations. Location, nesting, scope and visibility. Definition of
functions and procedures. Calls to functions and procedures. Modular design descending.

Unit 6: Files

Basic Definitions. Input / output of data in files. Types of access to files.

Unit 7: Prevention and detection of errors

Types of errors. Exceptions and Preventive programming. Debugging programs.asserts.

Unit 8: Introduction to object-oriented programming

Classes and objects. Attributes and methods. Encapsulation. Definition of classes.

Unit 9: Complex data structures

2

1.

2.

Lists: iterators, generators, functional paradigm, and list comprehensions. Sets. Dictionaries.

Methodology

The management of the teaching of the subject will be done through the documentary manager Caronte
which will serve to see the materials, manage the groups of practices, make the(http://caronte.uab.cat/),

corresponding deliveries, see the marks, and communicate with the teaching staff, etc. In order to use it, it is
necessary to do the following steps:

Register by giving the name, NIU, and a photo in JPG format. If you have already registered for another
subject, you do not need to do it again; You can go to the next step.
Enroll in the type of teaching "Fundamentals of Programming", giving as a subject code the one
provided on the first day of class.

The teaching of the subject takes place in two sessions of two hours each in a computer classroom. In these
sessions, the following teaching activities can be differentiated:

MD1 Exhibition of contents in class: Presentation of the theoretical contents to work in the class. Some of
these contents must have been prepared before the class from reading texts, viewing videos, searching for
information, etc. The contents presented will be directly related to the problems proposed in other teaching
activities, so that they will be the basis on which other activities of the course will be developed.

MD2 Participative lectures: Joint resolution of the set of problems proposed to students. All topics will be
accompanied by a list of problems that the student must solve. In this sense, and as the student progresses in
the depth of their knowledge, these problems will be little by little more complex, allowing in this way to clearly
appreciate the advantages of using the methodological tools taught during the course. All the problems
developed in class and others that can be proposed can be found on the Caronte platform, and will be
self-evaluable. These activities should allow the student to deepen understanding and personalize knowledge.
The fact that they are self-evaluable allows us to adjust the pace of consolidation and reflect on our own
learning.

MD3 Tutoring sessions: Hours freely available for questions about aspects in which students need additional
help from the faculty.

MD4 Programming short projects: Realization of short practical projects to deepen the applied aspects of the
theory. These projects will be resolved in small groups, where each member must do a part of the work and
put it in common with the rest of the group to have the final solution.

MD5 Evaluation activities: See evaluation section of this teaching guide.

Transversal competences

Competences T06 and T08 will be worked on and evaluated throughout the course in the following activities:

Competence MD1 MD2 MD4

T06 - Make a critical
evaluation of work carried
out

Personal work of
preparation of
materials

Evaluation:
Theoretical Exam (Tp
and Tf)

Evaluation: Problem Solving
(P)

Evaluation: Practical projects
(PLg and PLi)

3

http://caronte.uab.cat/

T8 - Plan and manage the
available time and resources

The guide of the project will
give indications of how to do
the planning.

Evaluation: Group practical
projects (PLg)

Activities

Title Hours ECTS Learning Outcomes

Type: Directed

Laboratory classes 11 0.44 2, 1, 5, 3, 4, 6, 7

Problems classes 26 1.04 2, 1, 5, 3, 4, 7

Theory classes 10 0.4 2, 1, 5, 3, 4, 7

Type: Supervised

Programming projects 30 1.2 2, 1, 5, 3, 4, 6, 7

Type: Autonomous

Classes preparation and personal work 20 0.8 2, 1, 3, 4, 6, 7

Solving self-assessment problems 48 1.92 2, 1, 5, 3, 4, 7

Assessment

Scheduled evaluation process and activities

The subject is evaluated through continuous evaluation. Throughout the course the evaluation activities will be
carried out:

Activity Date Recovery Percentage Minimum
grade

Partial
Theory
Exam (Tp)
Individual

Check
Planning

Check
Planning

15% No

Final
Theory
Exam (Tf)
Individual

Check
Planning

Check
Planning

35% Tf >= 5

No 20% No

4

Delivery of
Problems
(P)
Individual

Each
Week

Laboratory
Practice
(PLg)

Check
Planning

Check
Planning

20% PLg >= 5

Laboratory
Practice
(PLi)
Individual

Check
Planning

Check
Planning

10% PLi >= 5

To be able to approve the subject, through continuous assessment, the result of the weighted sum of the
evaluation activities must be greater than or equal to 5, and a minimum grade of 5 must be obtained in
activities 2 (Tf), 4 (PLg) and 5 (PLi).

Programming of evaluation activities

The dates for evaluation and submission of works will be published in the documentary manager Charon and
may be subject to programming changes for reasons of adaptation to possible incidents. Always be informed
by the document manager about these changes as it is understood that this is the usual platform for exchange
of information between teachers and students.

Recovery procedure

The student may apply for recovery whenever he has submitted to a set of activities that represent at least two
thirds of the total grade of the subject.

The theoretical exams (Tp and Tf) will be able to be recovered in a single exam of recovery in the dates fixed
by the coordination of the Degree. The exam of recovery will have a percentage of 50% on the final grade. The
mark of the exam of recovery, in case of being realized, will substitute to the marks of the partial examinations
(Tp) and final (Tf) realized during the course.

In accordance with the coordination of the Degree and the direction of the School of Engineering, the Individual
Problem Resolution (P) activity can not be recovered.

Grade review procedure

Students will have the right to review the theoretical exams (Tp and Tf). The place, date and time of revision
will be provided on the day the marks are published. If the student does not appear in this review, this activity
will not be reviewed later. Only in justified cases may a review be made after the date set and always up to a
maximum of 7 calendar days.

There will not be review of the marks of the practical projects (PLg and PLi) because the evaluation is done in
front of the students.

Qualifications

Non-Evaluable (NA): Any student who delivers a practice or a scheduled assessment will have a grade. It will
only be considered not evaluable in the case of not delivering any evaluable activity.

Final Mark: Is obtained with the weighted sum according to the criteria set in the section on evaluation
activities. If in any activity the minimum grade is not reached, the grade will come out of the following formula:

5

1.

2.
3.

Minimum (weighted sum of grades, 4.9)

Honors (MH): To award a grade of honor is the decision of the faculty responsible for the subject. The
regulations of the UAB indicate that MH can only be granted to students who have obtained a final grade equal
to or greater than 9.00. You can grant up to 5% of MH of the total number of students enrolled. If the number of
students with a grade greater than or equal to 9 is more than 5% of the total enrollment, students were
prioritized according to the following rules (in order):

Students who have made fewer recoveries of activities (because they failed the activity or because they
tried to improve their mark).
Students with more marks higher than 9 in activities 1, 2, and 5.
Students with the best overall mark.

Irregularities on the part of the student, copy and plagiarism

Without prejudice to other disciplinary measures that they deem appropriate, will be scored with a zero the
irregularities committed by the student that may lead to a variation of the rating of an evaluation act. Therefore,
copying, plagiarism, cheating, letting copy, etc. in any of the evaluation activities will involve suspending with a
zero. The evaluation activities qualified in this way and by this procedure will not be recoverable. If it is
necessary to pass any of these evaluation activities to pass the subject, this subject will be suspended directly,
without the opportunity to recover it in the same course. In this case, the numerical grade of the file will be the
lower value between 3.0 and the weighted average of the marks.

Evaluation of repeating students

The repeating students who have passed the subject "Advances Programming" the previous course, will be
able to pass the subject presenting some exercises of synthesis of the course. The final grade in this case will
be equal to 5. Students who want to take this way must inform the faculty of the subject the first week of class.

The rest of the repeating students must take the complete course. No marks from previous courses will be
maintained.

Assessment Activities

Title Weighting Hours ECTS Learning Outcomes

1. Partial theory exam 15% 2 0.08 2, 1, 5, 3, 4, 7

2. Final theory exam 35% 2 0.08 2, 1, 5, 3, 4, 7

3. Delivery of problems 20% 0 0 2, 1, 3, 4

4. Programming projects (group assessment) 20% 0.5 0.02 2, 1, 3, 4, 6

5. Programming projects (individual assessment) 10% 0.5 0.02 2, 1, 5, 3, 4

Bibliography

J. Guttag. Introduction to Computation and Programming Using Python: With Application to Understanding
. MIT Press. ISBN-10: 9780262529624Data. Second Edition

S. Chazallet . Eni, ISBN-10: 2409006140Python 3. Los fundamentos del lenguaje

E. Matthes. . No Starch PressPython Crash Course: A Hands-On, Project-Based Introduction to Programming
ISBN-10: 1593276036

6

M. Myers. . Createspace Independent PubA Smarter Way to Learn Python: Learn it faster. Remember it longer
ISBN-10: 1974431479

A. Prieto, A. Lloris, J.C. Torres. . Mc Graw-Hill ISBN-10: 8448146247Introducción a la Informática

A. Prieto, B. Prieto. . Mc Graw-Hill, Schaum ISBN-10: 8448198573Conceptos de Informática

L. Joyanes Aguilar. . Mc.Fundamentos de Programación: Algoritmos, Estructuras de Datos y Objetos
Graw-Hill. ISBN-10:8448161114

7

