

Reactores

Código: 102402 Créditos ECTS: 6

Titulación	Tipo	Curso	Semestre
2500897 Ingeniería Química	ОВ	3	1

La metodología docente y la evaluación propuestas en la guía pueden experimentar alguna modificación en función de las restricciones a la presencialidad que impongan las autoridades sanitarias.

Contacto

Nombre: Julián Carrera Muyo

Correo electrónico: Julian.Carrera@uab.cat

Uso de idiomas

Lengua vehicular mayoritaria: español (spa)
Algún grupo íntegramente en inglés: No

Algún grupo íntegramente en catalán: No

Algún grupo íntegramente en español: Sí

Prerequisitos

Es absolutamente recomendable haber cursado y superado las asignaturas de Balances en ingeniería química y

Objetivos y contextualización

El objetivo de esta asignatura es que el estudiante sea capaz de analizar, evaluar, diseñar y operar reactores qu

Competencias

- Actitud personal
- Analizar, evaluar, diseñar y operar sistemas o procesos, equipos e instalaciones propias de la Ingeniería Química de acuerdo con determinados requerimientos, normas y especificaciones bajo los principios del desarrollo sostenible.
- Aplicar conocimientos relevantes de las ciencias básicas: Matemáticas, Química, Física y Biología, así como principios de Economía, Bioquímica, Estadística y Ciencia de Materiales que permitan la comprensión, descripción y solución de problemas típicos de la Ingeniería Química.
- Aplicar el método científico a sistemas donde se produzcan transformaciones químicas, físicas o biológicas tanto a nivel microscópico como macroscópico.
- Comparar y seleccionar con objetividad las diferentes alternativas técnicas de un proceso químico.
- Comprender y aplicar los principios básicos en que se fundamenta la Ingeniería Química, y más concretamente: Balances de materia, energía y cantidad de movimiento. Termodinámica, equilibrio entre fases y equilibrio químico. Cinética de los procesos físicos de transferencia de materia, de energía y de cantidad de movimiento, y cinética de la reacción química.
- Hábitos de pensamiento
- Hábitos de trabajo personal
- Trabajo en equipo

Resultados de aprendizaje

- 1. Adaptarse a entornos multidisciplinares e internacionales.
- 2. Adaptarse a situaciones imprevistas.
- 3. Analizar, evaluar, diseñar y operar reactores homogéneos.
- 4. Aplicar e identificar conceptos básicos relacionados con la ingeniería química.
- Aplicar el método científico para la realización de balances macroscópicos de materia, energía y cantidad de movimiento.
- 6. Aplicar los principios básicos del flujo en reactores químicos.
- 7. Aplicar los principios básicos en que se fundamentan los reactores químicos.
- 8. Asumir y respetar el rol de los diversos miembros del equipo, así como los distintos niveles de dependencia del mismo.
- Comparar las alternativas de condiciones de operación de las reacciones químicas homogéneas y heterogéneas.
- 10. Desarrollar el pensamiento científico.
- 11. Desarrollar estrategias de aprendizaje autónomo.
- 12. Desarrollar la capacidad de análisis, síntesis y prospectiva.
- 13. Desarrollar la curiosidad y la creatividad.
- 14. Desarrollar un pensamiento y un razonamiento crítico.
- 15. Describir y aplicar los conceptos fundamentales de cinética biológica.
- 16. Evaluar de forma crítica el trabajo realizado.
- 17. Identificar, analizar, y resolver balances de energía en procesos químicos simples.
- 18. Identificar, analizar, y resolver balances de materia en estado estacionario y no estacionario con y sin reacción química en procesos químicos simples.
- 19. Identificar, gestionar y resolver conflictos.
- 20. Obtener y aplicar las ecuaciones de diseño de reactores ideales isotermos.
- 21. Trabajar de forma autónoma.
- 22. Trabajar en entornos complejos o inciertos y con recursos limitados.

Contenido

- 1. BALANCES MOLARES
- 1.1 La velocidad de reacción
- 1.2 La ecuación general del balance molar
- 1.3 Reactores discontinuos
- 1.4 Reactores de flujo continuo
- 2. DISEÑO DE REACTORES ISOTERMOS
- 2.1 Definición de conversión
- 2.2 Ecuaciones de diseño para reactores discontinuos
- 2.3 Ecuaciones de diseño para reactores continuos
- 2.4 Aplicación de las ecuaciones de diseño a reactores de flujo continuo
- 2.5 Reactores en serie
- 2.6 Reacciones en fase gas
- 3. DISEÑO DE REACTORES NO ISOTERMOS EN ESTADO ESTACIONARIO
- 3.1 El balance de energia
- 3.2 Operación adiabática

- 3.3 RCFP en estado estacionario con intercambiador de calor
- 3.4 Conversión en el equilibrio en una operación adiabática
- 3.5 RCTA con efectos de calor
- 4. DISEÑO DE REACTORES NO ISOTERMOS EN ESTADO NO ESTACIONARIO
- 4.1 Balance de energia en estado no estacionario
- 4.2 Balance de energia en un RDTA
- 5. DISTRIBUCIONES DE TIEMPO DE RESIDENCIA (DTR) EN REACTORES QUÍMICOS
- 5.1 Características generales
- 5.2 Medida de la DTR
- 5.3 Características de la DTR
- 5.4 DTR en reactores ideales
- 5.5. Diagnóstico y resolución de problemas
- 6. REACTORES CATALÍTICOS
- 6.1 Ecuación de diseño de un reactor catalítico de lecho empacado
- 6.2 Pérdida de presión en reactores catalíticos
- 6.3 Desactivación del catalitzador

Metodología

Aprendizaje autónomo del alumno: Consiste en el trabajo individual de cada alumno y engloba: la resolución de la Aprendizaje colaborativo: Consiste en la realización de trabajos en grupo sobre una parte de la asignatura, a ind Clases magistrales: Consiste en la exposición por parte del profesor. Se mostrarán a los alumnos los conceptos Seminarios de problemas: Los alumnos resolverán problemas relacionados con los contenidos expuestos en las

Tutorías: Encuentros de grupos reducidos de alumnos con el profesor para aclarar dudas, asesorar en la redacc

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Actividades

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clases magistrales	30	1,2	
Seminarios de problemas	15	0,6	
Tipo: Supervisadas			
Tutorías	9	0,36	
Tipo: Autónomas			
Aprendizaje colaborativo	20	0,8	
Aprendizaje autónomo del alumno	70	2,8	

Evaluación

Evaluación

Proceso y actividades de evaluación programadas

La asignatura consta de las siguientes actividades de evaluación:

Actividad A, prueba de diseño de reactores, 25% sobre la calificación final. Se realizará de forma presencial en el mes de noviembre.

Actividad B, trabajo sobre diseño de reactores, 15% sobre la calificación final. Este trabajo es realizará en grupo y se tendrá que presentar de forma escrita y en idioma inglés.

Actividad C, examen de síntesis, 60% sobre la calificación final. Este examen se realizará de forma presencial en el mes de enero.

Hay que tener en cuenta que la actividad B no es recuparable.

• Programación de actividades de evaluación

El calendario de las actividades de evaluación se dará durante la primera semana de clases y se hará público a través del Campus Vitual y la web de la Escola d'Enginyeria

• Proceso de recuperación

El 75% de la calificación final se podrá recuperar en un examen presencial con teoría y problemas. En esta prue

• Procedimento de revisión de las calificaciones

Para cada actividad de evaluación, se indicará una fecha y hora de revisión en la que el estudiante podrá revisar

Calificaciones especiales

Matrículas de honor. Otorgar una calificación de matrícula de honor es decisión del profesorado responsable de la asignatura. La normativa UAB indica que las MH sólo se podrán conceder a estudiantes que hayan obtenido una calificación final igual o superior a 9,0. Se puede otorgar hasta un 5% de MH del total de estudiantes matriculados.

• Irregularidades por parte del estudiante, copia y plagio

Sin perjuicio de otras medidas disciplinarias que se estimen oportunas, se calificarán con un cero las irregularida

• Evaluación de los estudiantes repetidores

El estudiante repetidor será evaluado con el mismo procedimiento que cualquier otro estudiante.

Actividades de evaluación

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Examen de síntesis	60%	4	0,16	2, 3, 5, 6, 7, 4, 9, 15, 10, 11, 12, 14, 17, 18, 20, 21, 22
Prueba de diseño de reactores	25%	2	0,08	3, 6, 7, 11, 14, 22
Trabajo de diseño de reactores	15%	0	0	1, 2, 3, 6, 7, 4, 8, 16, 9, 15, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22

Bibliografía

- 1) H. Scott Fogler. Elementos de ingeniería de las reacciones químicas. Cuarta Edición, 2008. Pearson Educación.
- 2) O. Levenspiel. Ingeniería de las reacciones químicas. 1978. Editorial Reverté.

Software

MS Office

Polymath 6.0