

Fundamentals of Psychobiology II

Code: 102606 ECTS Credits: 9

Degree	Туре	Year	Semester
2502443 Psychology	FB	1	2

The proposed teaching and assessment methodology that appear in the guide may be subject to changes as a result of the restrictions to face-to-face class attendance imposed by the health authorities.

Contact

Name: Roser Nadal Alemany

Email: Roser.Nadal@uab.cat

Use of Languages

Principal working language: catalan (cat)

Some groups entirely in English: Yes

Some groups entirely in Catalan: Yes

Some groups entirely in Spanish: No

Other comments on languages

In case the student requests the translation of the exam in Spanish, it will be sent in writing to the coordinator at the latest week 4. Neuroanatomy section in group 5 will be taught in English, as well as the assessment.

Teachers

Margalida Coll Andreu

David Costa Miserachs

Roser Nadal Alemany

Marcos Pallarés Anyo

Isabel Portell Cortés

Sonia Darbra Marges

Meritxell Torras García

Jordi Silvestre Soto

Soleil García Brito

Laura Amoros Aguilar

Marta Cano Catala

Prerequisites

There are no prerequisites, but the knowledge acquired in the first semester (Foundations of Psychobiology I) is assumed.

Objectives and Contextualisation

Psychology is an incredibly rich discipline, including aspects related to health, society, education, work, justice, etc. Knowledge of behaviour and the mind requires, among others, an understanding of the biological bases that support them. This is the aim of Psychobiology in general and of those compulsory subjects in the 2nd year (Physiological Psychology I and Physiological Psychology II), as well as several optional subjects in the 4 th year. In order to be able to understand the biological substrate of behaviour and mental processes it is necessary to previously understand the components and functioning of the nervous and endocrine systems, as well as the fundamental genetic mechanisms.

Objectives

At the end of the course the student will:

- Understand how genes and environment act to influence the behaviour and the different psychopathologies.
- Recognize and distinguish between different types of inheritance. Interpret and draw conclusions from data provided through graphics, histograms, etc.
- Use the knowledge acquired to apply it to genetic counselling, justifying the actions in each case presented.
- Describe the main features of the organization of the nervous system in invertebrates and vertebrates.
- Understand the main aspects of the morphological and histological development of the nervous system.
- Demonstrate knowledge of the main milestones of nervous system maturation throughout childhood and adolescence, and their relationship with behavioural and mental capacities.
- Understand the significance of some aspects of the development of the nervous system being dependent on experience.
- Describe the main mechanisms of degeneration of the nervous system and explain the anatomical and functional regenerative capacities of the central and peripheral nervous system.
- Describe the structure and organization of the main subdivisions of thenervous system.
- Relate the different parts of the central and peripheral nervous system with the functional aspects more directly linked to each one of them.
- Locate, on maps, models, three-dimensional computer images, etc., the main regions of the brain and the spinal cord.

Competences

- Develop strategies for autonomous learning.
- Identify and describe the processes and stages in psychological development through the life cycle.
- Identify, describe and relate the biology of human behaviour and psychological functions.
- Recognise the determinants and risk factors for health and also the interaction between people and their physical and social environment.
- Use different ICTs for different purposes.
- Work in a team.

Learning Outcomes

- 1. Develop strategies for autonomous learning.
- 2. Explain the key features of the anatomical and functional organization of the human nervous and neuroendocrine systems and their phylogenetic and ontogenetic evolution of the person and his physical and social environment.
- 3. Explain the mutual interaction between the physical and social environment of the person and the genetic, hormonal and neural factors.
- 4. Identify molecular and cell bases of inheritance and the main chromosome anomalies.
- 5. Identify, discover and relate genetic bases of behaviour.
- 6. Relate the highlights of the development, maturation and aging of the nervous system with the main stages of psychological development system.
- 7. Use different ICTs for different purposes.
- 8. Work in a team.

Content

SECTION A. GENETIC BASES OF BEHAVIOUR

- Unit A1. What is Behavioural Genetics?
- Unit A2. How do genes work?
- Unit A3. How do environments exert their influence on behaviour?
- Unit A4. How is genetic research on behaviour conducted?
- Unit A5. How mental disorders emerge? (I) Mendelian or monogenic inheritance
- Unit A6. How mental disorders emerge? (II) Multifactorial inheritance
- Unit A7. How mental disorders emerge? (III) Chromosomal abnormalities
- Unit A8. How can we apply all this information?: The case of genetic counselling

SECTION B. NEUROANATOMY

- Unit B1. Phylogenetic development of the nervous system
- Unit B2. Systems of protection of the nervous system
- Unit B3. Spinal cord
- Unit B4. Brainstem
- Unit B5. Cerebellum
- Unit B6. Diencephalon
- Unit B7. Telencephalon nuclei
- Unit B8. Cerebral cortex
- Unit B9. Sensomotor pathways and centers
- Unit B10. Homeostasis control systems
- Unit B11. Ontogenetic development of the nervous system
- Unit B12. Degeneration and regeneration of the nervous system

Methodology

The teaching methodology is based on different types of learning activities. Depending on the case, master classes, seminars, laboratory practices, supervised and autonomous activities will be performed. Different activities based on students-focused active learning methodologies involving problem solving are also proposed.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Activities

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Master classes (whole group)	48	1.92	2, 4, 5, 6
Practical sessions	23	0.92	3, 2, 4, 5, 6, 8
Workshops (Œ group)	6	0.24	2, 7
Type: Supervised			
Tutorials (on line and one-to-one)	15	0.6	3, 2, 4, 5, 6, 7
Type: Autonomous			
Documentation	14	0.56	1, 3, 2, 6, 7
Section A Project	21	0.84	1, 4, 5
Software for nervous system visualization	13	0.52	1, 2
Study	70.5	2.82	3, 2, 4, 5, 6, 7
Unit B9 preparation	11	0.44	1, 2

Assessment

Assessment (learning evidences)

The subject will be assessed based on the following learning evidences:

EV1. There are two evidences, corresponding to a 34% of the final grade, and include contents of Behavioural genetics (Section A). The evidences are:

EV1a (25.5% of final grade). Continuous work to solve Behavioural genetics cases corresponding to Section A. This work will be carried out both individually and as a group throughout several sessions in the classroom ($\frac{1}{2}$ group seminars), as well as autonomously outside the classroom. Timing: Continuously throughout the semester, with ongoing close interactions between the whole group classes (master classes) and the $\frac{1}{2}$ group seminars of this section.

EV1b (8.5% of the final grade). Content taught until the moment in Section A will be evaluated in a written exam. Timing: first assessment week.

EV2. It includes 3 evidences, with a global weight of 66% of the final grade, and it corresponds to Section B of Neuroanatomy. The evidences are:

EV2a (16% of the final grade). Content taught until the moment in Section B will be evaluated in a written exam. Timing: first assessment week.

EV2b (45% of the final grade). The comprehension and integration of the content of all the units of Section B will be assessed in a written exam. Timing: second assessment week.

EV2c (5% of the final grade). Continuous evaluation through the delivery of distinct activities. Timing: during all the semester.

Definition of Non-Assessable

Students who have not performed any of the assessment tests or have completed learning evidences with a weight lower than 40% for the whole subject will be marked as NA (Non-Assessable).

Grades from Sections A and B

The Section A grade (weight: 3.4 points of the whole course) corresponds to that obtained in EV1a and EV1b.

The Section B grade (weight: 6.6 points of the whole course) is obtained from the weighted average of EV2a to EV2c grades.

Reassessment tests

Only those students who have completed evidences with a weight equal or greater than 66.7% of the total grade will be eligible for reassessment. Students who have completed evidences with a weighting of between 40-66.6% of the total grades will be assessable but will not be allowed to do the assessment tests.

There will be two types of reassessment tests:

- Reassessment of the continuous work in Section A. This will be carried out continuously throughout the semester. The final Section A grade will already include the reassessment grades when carried out.
- Reassessment of Section B. When after the weighted average of Sections A and B, the grade is lower than 5 and Section B has been failed, students can perform a reassement of Section B. To be allowed to sit the reassessment test, students are required to have obtained a minimum mark of 3.5 (out of 10) in Evidence 2 (sum of EV2a-c, Neuroanatomy). Reassessment of Section B will consist of an exam with written questions about all Section B unit. The maximum grade that can be obtained in this reassessment is 5 (out of 10). The grade obtained in the reassessment for this evidence replaces the grade obtained previously.

Subject passed

The subject will be considered passed when the weighted average of Section A (or its continuous reassessment) and Section B (or its final reassessment), is equal to or greater than 5.

Students registered for the second (or more) time

These students will have to follow the same assessment system as those registered for the first time. No unique final synthesis test for students who enroll for the second time or more is anticipated.

Only inexceptional cases, such as students who are studying abroad on the Erasmus programme, will the possibility of a synthesis exam be considered, instead of the continuous assessment. These students will take a single final exam, with no possibility of reassessment. To be eligible for this type of assessment, students should contact the teachers during the first two weeks of the course. After this period, students will no longer be eligible for the integrative exam, and will be assessed by the standard continuous assessment system.

The proposed teaching and assessment methodologies may experience some modifications as a result of the restrictions on face-to-face learning imposed by the health authorities. The teaching staff will use the Moodle classroom or the usual communication channel to specify whether the different directed and assessment activities are to be carried out on site or online, as instructed by the Faculty.

At this link the evaluation guidelines of the Faculty of Psychology can be checked: https://www.uab.cat/web/estudiar/graus/graus/avaluacions-1345722525858.html

Language note

The written exams, in principle, will be performed in Catalan. The group 5, where the teaching of the Section B will be imparted in English, will perform the written assessment of this Section in English. If the student solicits translation of the examinations to Spanish (or to Catalan regarding group 5-Section B), contact the coordinator during maximum the 4 first weeks.

Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Evidence 1a. Continuous Project in Behavioural Genetics, classroom	25.5%	0	0	1, 4, 5, 8
Evidence 1b. Exam of the first block of Behavioral Genetics. Individual, written, face to face	8.5%	1	0.04	3, 4, 5
Evidence 2a. Exam of the first block of neuroanatomy (individual, written, face to face)	16%	1	0.04	1, 3, 2, 6, 7
Evidence 2b. Neuroanatomy exam (individual, written, face to face)	45%	1.5	0.06	1, 3, 2, 6, 8, 7
Evidence 2c. Continous project in Neuroanatomy.	5%	0	0	1, 3, 2, 6, 7

Bibliography

Basic Bibliography paperback (Spanish)

Bear, Mark F, Connors, Barry W, Paradiso, Michael A. (2016). *Neurociencia. La exploración del cerebro* (4ª edició). Barcelona: Wolters Kluwer.

Carlson, Neil R. (2018). Fisiología de la Conducta(12ª edició). Madrid: Pearson Educación.

Darbra i Marges, Sònia i Martín-García, Elena (2017). Mecanismos de la herencia humana: modelos de transmisión genética y anomalías cromosómicas. En D. Redolar (Ed.), Fundamentos de Psicobiología. Madrid: Editorial Panamericana.

Del Abril, Águeda, Ambrosio, Emilio, Caminero, Ángel A, García, Carmen, de Blas Mª del Rosario, de Pablo, Juan M. (2009) *Fundamentos de Psicobiología*. Madrid. Sanz y Torres.

Diamond, Marian C, Scheibel, Arnold B. (2014). El cerebro humano: libro de Trabajo. Barcelona: Ariel.

Felten, David L, O'Banion, M Kerry, Maida, Mary E. (2016). *Netter. Atlas de Neurociencia* (3ª edició). Barcelona: Elsevier.

Haines, Duane E. (2013). *Principios de Neurociencia. Aplicaciones básicas y clínicas.* (4ª edició). Barcelona: Elsevier.

Kiernan, John A., Rajakumar, Raj (2014). Barr. *El Sistema Nervioso Humano* (10ena edició). Barcelona: Wolters Kluwer Health España.

Kolb, Bryan, Whishaw, Ian Q. (2017). *Neuropsicología humana. (7ª edició).* Madrid: Editorial Médica Panamericana.

Martí Carbonell, Ma Assumpció, Darbra, Sònia. *Genètica del Comportament.* (2006) Servei de Publicacions UAB.

Nolte, Jack (2009) El encéfalo humano en fotografías y esquemas (3ª edició). Barcelona: Elsevier.

Redolar, Diego (2019) Psicobiología. Editorial Médica Panamericana.

Basic Bibliography paperback (English)

Neil R. Carlson, Melissa A. Birkett. (2017) Physiology of Behavior (12th edition). Harlow, Essex: Pearson.

Mark F. Bear, Barry W. Connors and Michael A. Paradiso. (2016) *Neuroscience: exploring the brain* (4th edition). Philadelphia: Wolters Kluwer.

Felten, David L, M. Kerry O'Banion, Mary Summo Maida. (2016). *Netter's atlas of Neuroscience* (3rd edition) Philadelphia: Elsevier.

Nolte, Jack (2010). Essentials of the human brain. Philadelphia, PA: Mosby/Elsevier.

Basic Bibliography e-book (Spanish)

Crossman, Alan R., Neary, David (2015). Neuroanatomía: texto y atlas en color. Elsevier.

https://cataleg.uab.cat/iii/encore/record/C__Rb1965789?lang=cat

García-Porrero Pérez, Juan A., Hurlé González, Juan M. (2015). Neuroanatomía humana. Editorial Médica Panamericana.

https://cataleg.uab.cat/iii/encore/record/C__Rb1934603?lang=cat

Purves, Dale (2016). Neurociencia. Editorial Médica Panamericana.

https://cataleg.uab.cat/iii/encore/record/C__Rb1987117?lang=cat

Complementary Bibliography paperback (Spanish)

Interlandi, Jeneen (2013). Romper la barrera cerebral. Investigación y Ciencia, 443, 38-43.

Jones, Allan R., Overly, Caroline C. (2013). Atlas genético del cerebro. Mente y cerebro, 58, 54-61.

Mesa-Gresa, Pilar, Moya-Albiol, Luis (2011). Neurobiología del maltrato infantil: el "ciclode la violencia". *Revista de Neurología*, 52, 489-503.

Mossop, Brain (2013). Cerebro y paternidad. Mente y Cerebro, 58, 28-33.

Quian Quiroga, Rodrigo, Fried, Itzhak, Kock, Christof (2013). El archivo de la memoria. *Investigación y Ciencia*, 439, 19-23.

Sinha, Pawan (2013). Ver por primera vez. Investigación y Ciencia, 444, 67-73.

Complementary Bibliography e-book (English)

Carlson, Neil R, Birkett, Melissa A. (2017). Physiology of Behavior. Pearson Education Limited.

https://cataleg.uab.cat/iii/encore/record/C__Rb2059151?lang=cat

Felton, David L, M. Kerry O'Banion, Maida, Mary Summo (2016). Netter's atlas of Neuroscience. Elsevier.

https://cataleg.uab.cat/iii/encore/record/C Rb2012805?lang=cat

Vanderah, Todd, Gould, Douglas (2015). *Nolte's The human brain. An introduction to its functional anatomy* (7th edition) Philadelphia, USA: Elsevier.

https://cataleg.uab.cat/iii/encore/record/C Rb1983723?lang=cat

Software

N/A