

2021/2022

Taller de Modelización

Código: 42255 Créditos ECTS: 6

Titulación	Tipo	Curso	Semestre
4313136 Modelización para la Ciencia y la Ingeniería / Modelling for Science and Engineering	ОТ	0	1

La metodología docente y la evaluación propuestas en la guía pueden experimentar alguna modificación en función de las restricciones a la presencialidad que impongan las autoridades sanitarias.

Contacto Uso de idiomas

Nombre: Xavier Mora Giné Lengua vehicular mayoritaria: inglés (eng)

Correo electrónico: Xavier.Mora@uab.cat

Prerequisitos

Los estudiantes deben tener habilidades matemáticas y computacionales al nivel de una licenciatura en ciencias.

Objetivos y contextualización

El Taller de Modelización está dirigido a analizar y resolver problemas del mundo real por medio de las matemáticas. Tiene un carácter eminentemente práctico e interdisciplinario.

Competencias

- "Aplicar el pensamiento lógico/matemático: el proceso analítico a partir de principios generales para llegar a casos particulares; y el sintético, para a partir de diversos ejemplos extraer una regla general."
- Analizar sistemas complejos de distintos campos y determinar las estructuras y parámetros básicos de su funcionamiento.
- Analizar, sintetizar, organizar y planificar proyectos de su campo de estudio.
- Aplicar la metodología de investigación, técnicas y recursos específicos para investigar en un determinado ámbito de especialización.
- Comunicar en lengua inglesa los resultados de los trabajos del ámbito de estudio.
- Demostrar responsabilidad en la gestión de la información y del conocimiento, y en dirección de grupos y / o proyectos en equipos multidisciplinares.
- Extraer de un problema complejo la dificultad principal, separada de otras cuestiones de índole menor.
- Formular, analizar y validar modelos matemáticos de problemas prácticos de distintos campos.
- Innovar en la búsqueda de nuevos espacios / ámbitos en su campo de trabajo.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- Resolver problemas complejos aplicando los conocimientos adquiridos a ámbitos distintos de los originales
- Usar métodos numéricos apropiados para solucionar problemas específicos.

Resultados de aprendizaje

- 1. "Aplicar el pensamiento lógico/matemático: el proceso analítico a partir de principios generales para llegar a casos particulares; y el sintético, para a partir de diversos ejemplos extraer una regla general."
- 2. Analizar, sintetizar, organizar y planificar proyectos de su campo de estudio.
- 3. Aplicar la metodología de investigación, técnicas y recursos específicos para investigar en un determinado ámbito de especialización.
- 4. Comunicar en lengua inglesa los resultados de los trabajos del ámbito de estudio.
- 5. Construir y resolver modelos que describan el comportamiento de un sistema real
- 6. Dar una solución a un problema real con restricciones temporales.
- 7. Demostrar responsabilidad en la gestión de la información y del conocimiento, y en dirección de grupos y / o proyectos en equipos multidisciplinares.
- 8. Extraer de un problema complejo la dificultad principal, separada de otras cuestiones de índole menor.
- 9. Implementar los métodos numéricos apropiados para encontrar solución al problema objeto de estudio.
- 10. Innovar en la búsqueda de nuevos espacios / ámbitos en su campo de trabajo.
- 11. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- 12. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- Resolver problemas complejos aplicando los conocimientos adquiridos a ámbitos distintos de los originales
- 14. Seleccionar la mejor descripción de un sistema en función de sus características particulares

Contenido

Modelización matemática, es decir, resolver problemas del mundo real mediante las matemáticas.

Metodología

La metodología de la modelización matemática es bastante genérica y gira en torno al denominado ciclo de modelización matemática: 1. Análisis, simplificación, representación; 2. Tratamiento matemático; 3. Interpretación; 4. Validación, estimación de errores, mejora.

La actividad principal del taller es un proyecto que los estudiantes deben desarrollar, organizados en equipos. Además, el taller incluirá también algunas conferencias sobre ideas generales, técnicas y ejemplos ilustrativos.

El proyecto simula la situación de un equipo de profesionales que ha sido contratado por una empresa.

El tema del proyecto será un problema real. El proyecto debe terminar en una presentación final de los resultados. Esta presentación incluirá tanto una disertación oral como una memoria escrita. Ambos deberían dirigirse a la organización (posiblemente hipotética) que propusiera el problema. Como regla general, los aspectos técnicos quedarán relegados a secciones especiales de las memorias escritas.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Actividades

Título	Horas	ECTS	Resultados de aprendizaje		
Tipo: Dirigidas					
Clases	38	1,52	1, 2, 3, 5, 7, 6, 8, 9, 10, 12, 13, 14, 11		
Proyecto	112	4,48	1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 13, 14, 11		

Evaluación

Las calificaciones de los ítems de evaluación 1 y 2 serán las mismas para todos los miembros de cada equipo, mientras que las de los ítems 3 y 4 tienen un carácter individual. En casos excepcionales en los que un componente de un equipo haya colaborado claramente menos que sus compañeros de equipo, sus calificaciones en los elementos 1 y 2 se multiplicarán por un factor menor que 1.

El ítem 1 tendrá en cuenta los resultados del proyecto, así como el aprendizaje de nuevos conocimientos en relación con el proyecto.

Los ítems 2 y 3 se refieren a la organización y expresión del discurso, tanto en forma escrita (item 2) como oral (item 3).

El examen (ítem 4) tratará sobre (a) los conceptos generales y los ejemplos ilustrativos que se presentarán en el curso, y posiblemente (b) el proyecto del equipo.

Todos los ítems de evaluación requieren, como condición sine quibus non, la originalidad del trabajo y la corrección de las matemáticas.

Actividades de evaluación

Título	Peso	Horas	ECTS	Resultados de aprendizaje
1. Proyecto en equipo. Contenido	40	0	0	1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 13, 14, 11
2. Proyecto en equipo. Presentación escrita	20	0	0	1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 13, 14, 11
3. Proyecto en equipo. Presentación oral	10	0	0	1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 13, 14, 11
4. Examen	30	0	0	1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 13, 14, 11

Bibliografía

Ch. Rousseau + Y. Saint-Aubin, 2008. Mathematics and Technology. Springer.

Software

La asignatura no requiere un software específico.