

Ingeniería de Bioprocesos

Código: 43322 Créditos ECTS: 6

Titulación	Tipo	Curso	Semestre
4314579 Ingeniería Biológica y Ambiental	ОВ	1	1

Contacto

Correo electrónico: david.gabriel@uab.cat

Equipo docente

Pau Ferrer Alegre María Eugenia Suarez Ojeda Teresa Gea Leiva

Nombre: David Gabriel Buguña

Prerequisitos

No hay prerrequisitos para esta asignatura

Objetivos y contextualización

El objetivo principal del módulo es que el alumno asimile la importancia de los procesos biotecnológicos en la situación actual y su potencialidad en el futuro de nuestra sociedad. El alumno deberá comprender las ventajas, inconvenientes, debilidades y oportunidades que supone la alternativa biológica tanto en procesos industriales de bioproductos o biorefinerias como en los procesos de tratamiento de efluentes y residuos contaminados

Competencias

- Aplicar la metodología de investigación, técnicas y recursos específicos para investigar y producir resultados innovadores en el ámbito de la ingeniería biológica y ambiental.
- Aplicar los métodos, las herramientas y las estrategias para desarrollar procesos y productos biotecnológicos con criterios de ahorro energético y sostenibilidad.
- Buscar información en la literatura científica utilizando los canales apropiados e integrar dicha información con capacidad de síntesis, análisis de alternativas y debate crítico.
- Integrar y hacer uso de herramientas de Biotecnología y de Ingeniería de Bioprocesos para resolver problemáticas en ámbitos biotecnológicos emergentes industriales de producción de bioproductos.
- Integrar y hacer uso de herramientas de ingeniería química, ambiental y/o biológica para el diseño de sistemas biológicos enfocados al tratamiento sostenible de residuos y/o a procesos biotecnológicos industriales.
- Organizar, planificar y gestionar proyectos.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Uso de idiomas

Lengua vehicular mayoritaria: español (spa)

 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.

Resultados de aprendizaje

- 1. Aplicar la metodología de investigación, técnicas y recursos específicos para investigar y producir resultados innovadores en el ámbito de la ingeniería biológica y ambiental.
- 2. Buscar información en la literatura científica utilizando los canales apropiados e integrar dicha información con capacidad de síntesis, análisis de alternativas y debate crítico.
- 3. Contextualizar los procesos biológicos en la situación industrial actual.
- 4. Diseñar y gestionar un proyecto de investigación en el ámbito de la ingeniería ambiental y biológica.
- Identificar el proceso industrial más adecuado entre diferentes alternativas desde un enfoque ambiental.
- Identificar las ventajas e inconvenientes de los procesos biológicos en el tratamiento de efluentes y residuos sólidos.
- 7. Identificar las ventajas e inconvenientes de los procesos biológicos para la producción industrial de bioproductos.
- 8. Organizar, planificar y gestionar proyectos.
- 9. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- 10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- 11. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- 12. Utilizar los conceptos básicos de microbiología aplicada para el diseño de un proceso biológico.

Contenido

- Estado del arte de los procesos biotecnológicos en la sociedad actual. Conceptos de biotecnología industrial, bioeconomia y biorefinería. Fases de la sustitución de un proceso químico por uno de biológico.
- Microbiología aplicada: Taxonomía. Diversidad microbiana. Ingeniería de microorganismos.
- Crecimiento, biocatálisis y cinética microbiana. Balances de materia y energía en un proceso biológico: Eliminación de materia orgánica en una estación depuradora de aguas residuales (EDAR).
- Operación de un proceso biotecnológico. Configuraciones. Estrategias de separación de producto.
- Alternativas biológicas al tratamiento de efluentes líquidos urbanos e industriales. Comparación de los procesos físico-químicos y biológicos. La EDAR del futuro.
- Biofiltración de gases contaminados. Diseño de posibles configuraciones.
- Valorización material y energética de residuos sólidos. Oportunidades de reaprovechamiento de los residuos actuales.

Metodología

- 1) Clases teóricas. El alumno adquiere los conocimientos científicos propios de la asignatura asistiendo a las clases magistrales y complementándolas con el estudio personal. Además, se aplicará el método de aprendizaje basado en problemas para reforzar los conocimientos dentro de las clases de teoría con casos de estudio específicos.
- 2) Talleres de problemas y casos de estudio. En estas sesiones se aplicará la resolución de problemas y/o casos prácticos. Asimismo, a través de actividades en grupo se trabajará la capacidad de análisis y síntesis y el razonamiento crítico del alumno.
- 3) Tutorías: Encuentros de grupos reducidos de alumnos con el profesor para aclarar dudas, a convenir sólo por correo-e institucional. Remarcar que no se responderán consultas por correo electrónico ni mensajes enviados usando la mensajería del Moodle.

4) Estudio autónomo y en grupo: Son actividades autónomas que servirán al estudiante para consolidar los conocimientos adquiridos en las actividades presenciales y desarrollar las competencias correspondientes

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Actividades

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clases de problemas y estudio de casos (Seminarios). Preparación y debate de casos	12	0,48	1, 2, 3, 5, 6, 7, 11, 10, 9, 12
Clases magistrales	24	0,96	3, 5, 6, 7, 11, 10, 9, 12
Tutorías	2	0,08	11
Tipo: Supervisadas			
Realización de trabajos teóricos, casos, problemas en grupo.	3	0,12	1, 2, 3, 5, 6, 7
Tipo: Autónomas			
Estudio personal, Lectura de libros, artículos y casos de estudio	49	1,96	1, 2, 3, 5, 6, 7, 11, 10, 9, 12
Resolución de problemas, casos de estudio y elaboración de trabajos en grupo	49	1,96	1, 2, 3, 5, 6, 7, 11, 10, 9, 12

Evaluación

ASPECTOS COMPLEMENTARIOS:

- Para superar la asignatura es necesario obtener una calificación final igual o superior a 5 como promedio de las diferentes notas de evaluación. Para poder promediar todas las evaluaciones la nota mínima del examen deberá ser de 4 en la parte de teoria y 3 en la parte de problemas. De no obtener esta calificación mínima, el alumno deberà realizar la prueba de recuperación para superar la asignatura
- Se considerará que un alumno obtendrá la calificación de "No presentado" si se da el siguiente supuesto: "la valoración de todas las actividades de evaluación realizadas no permite alcanzar laqualificació global de 5 en el supuesto de quehubiera obtenido la máxima nota en todas ellas "
- Los alumnos que no puedan asistir a una prueba de evaluación individual por causa justificada y aporten la documentación oficial correspondiente a la coordinación del Máster, tendrán derecho a realizar la prueba en cuestión en otra fecha. La coordinación del máster velará por la concreción de esta con el profesor de la asignatura.

- -Para cada actividad de evaluación, se indicará un lugar, fecha y hora de revisión en la que el estudiante podrá revisar la actividad con el profesorado. En este contexto, se podrán hacer reclamaciones sobre la nota de la actividad, que serán evaluadas por el profesorado responsable de la asignatura. Si el estudiante no se presenta en esta revisión, no se revisará posteriormente esta actividad."
- Matrículas de honor (MH). Otorgar una calificación de matrícula de honor es decisión del profesorado responsable de la asignatura. La normativa de la UAB indica que las MH sólo se podrán conceder a estudiantes que hayan obtenido una calificación final igual o superior a 9.00. Se puede otorgar hasta un 5% de MH del total de estudiantes matriculados.
- Sin perjuicio de otras medidas disciplinarias que se estimen oportunas, se calificarán con un cero las irregularidades cometidas por el estudiante que puedan conducir a una variación de la calificación de un acto de evaluación. Por lo tanto, la copia, el plagio, el engaño, dejar copiar, etc. en cualquiera de las actividades de evaluación implicará suspenderla con un cero.

RECUPERACIÓN:

Se realizará una prueba de recuperación de acuerdo al calendario establecido para los estudidants que no hayan superado la asignatura. La prueba de recuperación será escrita e incluirá un bloque teórico y un práctico. Esta recuperación permitirá recuperar sólo la prueba de teoría y problemas, el resultado será promediado posteriormente con las notas de evaluación del caso práctico. PPara poder promediar todas las evaluaciones, la nota mínima del examen deberá ser de 4 en la parte de teoria y 3 en la parte de problemas. De acuerdo a la normativa actual y al porcentaje de la presentación y defensa oral del caso práctico, estos no podrán ser recuperados.

Actividades de evaluación

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Examen problemas (individual)	20%	2	0,08	5, 6, 7, 12
Examen teórico (individual)	30%	1	0,04	3, 5, 6, 7, 11, 10, 9, 12
Presentación oral de los casos prácticos (en grupo)	25%	1	0,04	1, 2, 3, 4, 5, 6, 7, 8, 11, 9
Redacción de informes de casos (en grupo)	25%	7	0,28	1, 2, 3, 4, 5, 6, 7, 8, 11, 10, 9, 12

Bibliografía

- A) Doran, Pauline M.- Bioprocess engineering principles. Amsterdam: Elsevier, cop. 2013 2nd ed. Accés per usuaris UAB: http://www.sciencedirect.com/science/book/9780122208515
- B) Shuler, Michael L. Bioprocess engineering: Basic concepts. Upper Saddle River, New Jersey: Prentice Hall, cop. 2002 2nd ed.
- C) Liu, Shijie. Bioprocess engineering: kinetics, biosystems, sustainability, and reactor design. Boston: Elsevier, cop. 2020 Bioprocess Engineering | ScienceDirect (uab.cat)
- D) Glick BR et al. "Molecular biotechnology : principles and applications of recombinant DNA" 4th Ed. 2010. ASM Press
- E) Shigeo Katoh et al. "Biochemical Engineering: A Textbook for Engineers, Chemists and Biologists" 2015 Wiley-VCH Verlag GmbH & Co : <u>Biochemical Engineering | Wiley Online Books (uab.cat)</u>
- F) Lema JM, Suarez S. "Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment". 2018. IWA Publishing.
- G) Kennes C, Veiga MC. "Bioreactors for waste gas treatment". 2001. Kluwer Academic Publishers.

H) Materials diversos y artícles científics disponibles a Moodle.

Software

El software utilizado será:

- MS Excel: para la utiiltzación de hojas de cálculo de diseño de sistema: