

Física

Código: 100810 Créditos ECTS: 6

Titulación	Tipo	Curso	Semestre
2500250 Biología	FB	1	2

Contacto

Nombre: Francesc Xavier Alvarez Calafell
Correo electrónico: xavier.alvarez@uab.cat

Idiomas de los grupos

Puede consutarlo a través de este <u>enlace</u>. Para consultar el idioma necesitará introducir el CÓDIGO de la asignatura. Tenga en cuenta que la información es provisional hasta el 30 de noviembre del 2023.

Prerrequisitos

Se aconseja seguir el curso Propedéutico de Física que ofrece la Facultad y que facilita la comprensión de la asignatura. El requisito básico es voluntad de aprender y ganas de trabajar; saber sumar, restar, multiplicar, dividir, escribir y hacer logaritmos y exponenciales. Sentir auténtica curiosidad por los sistemas biológicos. En lo que al resto se refiere, la asignatura requiere pocos conocimientos previos de física, y se centra en ilustrar la aplicación de conceptos físicos simples a la comprensión de problemas biológicos.

Objetivos y contextualización

- Llegar a comprender la utilidad de la física como instrumento de exploración y de comprensión de los sistemas biológicos, y de los instrumentos utilizados para observarlos.
- Identificar algunos temas de biofísica y de física médica, para apreciar la relación entre física y biología como una de las fronteras actuales más activas del conocimiento.
- Introducir algunos elementos cuantitativos en el análisis de algunas situaciones biológicas, cómo por ejemplo conducción nerviosa, visión, audición, movimiento celular, sistema circulatorio, transporte en membranas, efectos biológicos de las radiaciones,

Competencias

- Actuar con responsabilidad ética y con respeto por los derechos y deberes fundamentales, la diversidad y los valores democráticos.
- Actuar en el ámbito de conocimiento propio evaluando las desigualdades por razón de sexo/género.
- Actuar en el ámbito de conocimiento propio valorando el impacto social, económico y medioambiental.
- Capacidad de análisis y síntesis

- Comprender e interpretar los fundamentos físico-químicos de los procesos básicos de los seres vivos.
- Introducir cambios en los métodos y los procesos del ámbito de conocimiento para dar respuestas innovadoras a las necesidades y demandas de la sociedad.
- Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
- Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

Resultados de aprendizaje

- 1. Actuar en el ámbito de conocimiento propio evaluando las desigualdades por razón de sexo/género.
- 2. Actuar en el ámbito de conocimiento propio valorando el impacto social, económico y medioambiental.
- 3. Analizar críticamente los principios, valores y procedimientos que rigen el ejercicio de la profesión.
- 4. Analizar una situación e identificar sus puntos de mejora.
- 5. Capacidad de análisis y síntesis
- 6. Describir cómo las teorías físicas sirven para plantear con mayor precisión problemas de biología
- 7. Explicar las ideas básicas de física
- 8. Identificar algunas fronteras actuales de la biofísica
- 9. Leer, comprender, resumir y explicar artículos de divulgación de física aplicada a biología
- 10. Proponer nuevos métodos o soluciones alternativas fundamentadas.
- 11. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
- 13. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- 14. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- 15. Resolver problemas simples de física referidos a situaciones de interés biológico

Contenido

Bloque 1: Biofísica de la célula

- 1. Repaso de los conceptos elementales de la mecánica. Aplicación a máquinas moleculares.
- 2. Leyes de escala. Tamaño y forma. Implicaciones fisiológicas y evolutivas.
- 3. Hidrostática. Fluidos en reposo. Distribución de presiones y sistema circulatorio.
- 4. Fluido viscoso. Ley de Stokes. Sedimentación. Movimiento de organismeo en fluidos.
- 5. Ecuación de Poiseuille. Flujo de sangre. Permeabilidad de membranas.
- 6. Difusión. Ley de Fick y movimiento browniano. Transporte en membranas.
- 7. Campo eléctrico y potencial eléctrico. Las membranas como condensadores.
- 8. Ley de Ohm. Canales iónicos. Despolarización de membranas.
- 9. Transporte iónico en membranas. Potencial de Nernst. Transporte activo. Bombas molecularse.
- Corriente nerviosa. Física del potencial de acción: forma, duración y velocidad. Sinapsis. Redes neuronales.

Bloque 2: Biofísica de los sentidos

- 1. Ondas de propagación. Ondas estacionarias.
- 2. Acústica. Velocidad e intensidad del sonido. Escala decibélica.
- 3. Audición. Oido externo, medio e interno.
- 4. Óptica física. Interferencia. Difracción. Polarización.
- 5. Óptica geométrica. Refracción. Lentes. Microscopio.
- 6. Visión. El ojo: enfoque. Defectos. Agudeza visual.

Bloque 3: Radiaciones ionizantes

- 1. Física cuántica. Relaciones de Einstein-Planck y de de Broglie. Niveles energéticos
- 2. Dosimetría física y biológica. Efectos biológicos de las radiaciones ionizantes.
- 3. Desintegraciones radiactivas. Semivida.
- 4. Ideas básicas de física nuclear: energía de enlace, niveles nucleares, radiaciones.

Metodología

Cada clase viene motivada por alguna cuestión de interés biológico. El objetivo de la asignatura es aprender mediante ecuaciones físicas muy simples que la física es una herramienta muy útil para saber más biología.

El desarrollo de la asignatura se basa en actividades formativas presenciales en el aula, así como el campus virtual mediante entregas de tareas, ejercicios y participación en los foros. Las actividades se dividen en dirigidas, supervisadas, y autónomas.

Para las clases de resolución de problemas, los estudiantes prepararán algunos de ellos por su cuenta antes de cada sesión. El profesor resolverá los problemas clave y ayudará a los estudiantes con dudas y dificultades.

Entre las actividades supervisadas se propone un trabajo de investigación basado en el estudio de un fenómeno físico, el que se analizará y presentará en grupos pequeños en forma de reseña escrita y una exposición oral.

En todos los casos se utilizará material de apoyo y una guía detallada, donde el estudiante puede consultar los contenidos, la programación de actividades tanto de evaluación continuada como de aprendizaje dirigido y la lista de referencias.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Actividades

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clases de teoría	35	1,4	3, 6, 7, 8, 10, 11, 12, 15, 5
Tipo: Supervisadas			

Clases de problemas	15	0,6	8, 12, 15
Trabajo de investigación	5	0,2	6, 7, 8, 9, 12, 13, 14, 5
Tipo: Autónomas			
Estudio personal, resolución de problemas, trabajo de clase, participación en los foros en el campus virtual.	86	3,44	3, 6, 8, 9, 11, 14, 15, 5

Evaluación

El correcto logro de las competencias por parte del estudiantado se evaluará mediante 3 tipos de actividades de evaluación, cada uno con un peso concreto en la nota final y con unos requisitos específicos. Una cuarta actividad será para aquellos estudiantes que hayan suspendido el / los parciales.

- 1. Exámenes parciales (70%): A lo largo del curso se realizarán 2 exámenes parciales escritos de los contenidos (teoría, problemas). El primer parcial evaluará el Bloque 1 y tendrá un peso del 40%, el segundo parcial evaluará los Bloques 2 y 3 y tendrá un peso del 30%. Se debe obtener mínimo un 4 sobre 10 de media en los parciales para hacer media con el resto de las notas.
- 2. Actividades de evaluación continuada (15%): A lo largo del semestre es plantearán actividades adicionales, como solución de ejercicios, cuestionarios en el moodle, ejercicios en clase y foros (por cada bloque temático). Estas actividades serán evaluadas y su promedio tendrá un peso del 15% en la nota global. No hay requisitos de nota mínima, pero si hay una restricción para las entregas de los ejercicios, han de realizarse de manera individual.
- 3. Trabajo de investigación (15%): Por grupos de max. 5 estudiantes se desarrollará una temática basada en el estudio de un fenómeno físico haciendo uso de unos a más artículos científicos. Este trabajo tendrá dos entregas y una reentrega del documento escrito en donde se han de aplicar los comentarios sugeridos en las tutorías y en el feedback, y una entrega de diapositivas para la exposición final.
- 4. Examen final (recuperación de los parciales suspendidos, o posibilidad de aumentar la nota, conservando la nota anterior en caso de que la del examen finalsea más baja). Sólo podrán presentarse a este examen los estudiantes que hayan realizado en su momento los dos exámenes p a r c i a l e s .

La nota global se obtendrá aplicando la fórmula:

Nota Global = Primer Parcial*0,40 + Segundo Parcial*0,30 + Trabajo*0,15 + (Asistencia/Foros/Entregas) *0,15

La asignatura se considerará superada cuando la nota global sea igual o superior a 5 puntos sobre 10.

Los estudiantes repetidores harán las mismas actividades de evaluación que los estudiantes de nuevo ingreso.

Las Matrículas de Honor nada más podrán otorgarse a aquellos estudiantes que hayan obtenido una calificación igual o superior a 9. Se podrán conceder a un máximo de 1 por cada 20 estudiantes matriculados.

Esta asignatura no contempla el sistema de evaluación única.

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Entrega de Trabajo	15%	1	0,04	1, 2, 6, 7, 8, 9, 12, 13,

Examen de Sirve para subir la nota obtenida en los 2,5 0,1 6, 7, 10, 12, 15, 5 recuperación exámenes parciales Primer Examen parcial 40% 2,5 0,1 6, 7, 10, 15, 5 Segundo Examen 30% 2 0,08 6, 7, 10, 15, 5 parcial Trabajo de clase y 15% 1 0,04 1, 3, 4, 7, 8, 9, 11, 15, problemas

14, 15, 5

Bibliografía

Se proponen diferentes libros de consulta para la mayor parte de los temas, incluyendo algunos de carácter básico para consulta general y otros avanzados para los estudiantes que así lo deseen. Además, se proporcionan los enlaces de acceso de algunos ellos. Muchos conceptos tanto matemáticos como físicos o fisicoquímicos son introducidos de manera intuitiva e ilustrados con numerosos ejemplos prácticos. Estos libros prometen profundizar en los temas más importantes del curso.

- D. Jou, J E Llebot y C Pérez-García, Física para las ciencias de la vida, segunda edición, Mc Graw Hill, 2009
- J. W. Kane y M. M. Sternheim, Física, Reverté, 1989
- R. Cotterill, Biophysics: An Introduction, John Willey & Sons, LTD. 2002.
- P. Davidovits, Physics in Biology and Medicine, Third Edition, Losevier-Academic Press, 2008.
- B. Rubin. Compendium of Biophysics. Wiley, 2017. Online access: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119160281
- T. A. Waigh. The Physics of Living Processes A Mesoscopic Approach. Wiley, 2015. Online access: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118698310
- T. Bécherrawy. Vibrations and Waves. Wiley, 2011. Online access: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118586525
- M. W. McCall Classical Mechanics From Newton to Einstein A Modern Introduction 2e. Wiley, 2010.
 Online access: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470972502

Avanzada

- R. Phillips, J. Kondev, J. Theriot, H. G. Garcia, Physical biology of the cell, Garland Science (Taylor and Francis Gropuo), Londres, 2013
- D. and H. Yevik. Fundamental Math and Physics for Scientists and Engineers. Wiley, 2014. Online access: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118979792

Software

Simuladores Online

- Difracción de Luz por una Rendija -https://www.walter-fendt.de/html5/phes/singleslit_es.htm
- Interferencia de Ondas https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference es.html
- oPhysics: Interactive Physics Simulations https://ophysics.com/waves11.html
- Recursos de Física https://www.compadre.org/osp/EJSS/4441/235.htm