2023/2024 ## **Industrial Microbiology** Code: 101014 ECTS Credits: 6 | Degree | Туре | Year | Semester | |----------------------|------|------|----------| | 2500502 Microbiology | ОВ | 3 | 2 | ### Contact Name: Jordi Mas Gordi Email: jordi.mas@uab.cat ## Teaching groups languages You can check it through this <u>link</u>. To consult the language you will need to enter the CODE of the subject. Please note that this information is provisional until 30 November 2023. ## **Prerequisites** The student must have completed with success the subject Microbiology of the Microbiology degree, or some subject of equivalent content. ### **Objectives and Contextualisation** The aim of this course is to train the student in the different aspects microbiology which have particular relevance in the industry field, particularly those in which microorganisms participate as active production agents. A series of initial lectures deals with aspects such as the manipulation and use of microbial cultures as starters in production processes, as well as with the sterilization and control procedures required to ensure that these processes are successful. A second more specific set of lectures analyses the role of microorganisms in different specific processes, making particular emphasis on the composition of the microbial communities involved, as well as on the most relevant metabolic activities. ## Competences - Apply knowledge of theory to practice - Apply microorganisms or their components to the development of products of interest in health, industry and technology. - Apply suitable methodologies for taking samples and characterising and manipulating microbial populations and communities in natural and artificial ecosystems, and establish the relationships between these and those with other organisms. - Apply the principles of risk assessment and prevention in the laboratory, and biosafety regulations on microorganisms and manipulation of different biological systems. - Design and use disinfection and sterilisation treatments and also methods for assessing their effectiveness. - Identify and solve problems. - Know and apply safety and quality regulations in microbiology. - Use bibliography or internet tools, specific to microbiology or other related disciplines, both in English and in the first language. - Work individually or in groups, in multidisciplinary teams and in an international context. # **Learning Outcomes** - 1. Apply knowledge of theory to practice - 2. Apply suitable sampling strategies and techniques for different types of environments. - 3. Characterise populations and communities of microorganisms from environmental and industrial samples. - 4. Describe and calculate thermal disinfection procedures to ensure reaching the required level of sterilisation inside tanks and reactors. - 5. Describe the microorganisms that participate in production processes. - 6. Evaluate levels of microbial contamination in samples of air and on surfaces. - 7. Evaluate the impact of different types of microorganisms on the final characteristics of the product. - 8. Identify and evaluate microbiological risks in production processes. - 9. Identify and solve problems. - 10. Identify the origin of the principal microorganisms of importance in the industrial environment. - 11. Implement and manage measures to ensure the quality of the final product. - 12. Know and apply safety and quality regulations in microbiology. - 13. Know and apply the different methods for using biocide products in microbiology. - 14. Know and apply the different procedures for sterilising and reducing microbial load in industrial, clinical and experimental environments. - 15. Know the products aimed at the environmental, clinical, and agrofood control of microorganisms, and the corresponding regulations. - 16. Know the role of microorganisms in different production processes in order to improve these processes and ensure their success. - 17. Understand the required operations and processes for obtaining products in which microorganisms intervene - 18. Use bibliography or internet tools, specific to microbiology or other related disciplines, both in English and in the first language. - 19. Work individually or in groups, in multidisciplinary teams and in an international context. #### Content - 1. Introduction to Industrial Microbiology - 2. Groups of microorganisms of industrial interest. - 3. Problems caused by microorganisms - 4. Microbial control strategies - 5. Assessment of environmental microbial contamination - 6. Cleaning and disinfection of industrial facilities - 7. Reduction of microbial load in raw materials and products - 8. Limitation of microbial growth - 9. Production of cell biomass - 10. Lactic fermentations on vegetables - 11. Fermentation in meat - 12. Production of alcoholic beverages - 13. Microbiological aspects in the manufacture of dairy products - 14. Production of energy using microorganisms - 15. Fuel desulfurization - 16. Biodegradable plastics of microbial origin - 17. Microbial biosensors ## Methodology Teaching of the subject is organized in theory lectures and problem-solving sessions. Theory lectures. The theory classes are designed to allow the student to progressively incorporate the necessary elements to achieve a structured knowledge of the functioning of prokaryotic cells. The contents are taught in the classroom using teaching resources that are available to the student through the virtual campus. Problem-solving sessions. Problem-solving sessions are strictly dedicated to work interactively with the teacher, in small size groups. These sessions will be devoted both to the resolution of numerical exercises and to the discussion and resolution of practical cases. Both the exercises and the practical cases require the realization of personal work outside the classroom. Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires. ## **Activities** | Title | Hours | ECTS | Learning Outcomes | |--------------------------|-------|------|--| | Type: Directed | | | | | Problem-solving sessions | 15 | 0.6 | 1, 12, 9, 8, 11, 4, 19, 18 | | Theory lectures | 30 | 1.2 | 2, 17, 16, 15, 12, 14, 13, 5, 8, 10, 11, 4, 6, 7 | | Type: Autonomous | | | | | Literature search | 20 | 0.8 | | | Problem solving | 30 | 1.2 | | | Study | 32 | 1.28 | | | Text readings | 20 | 0.8 | | #### **Assessment** Assessment will be carried out through two exams each contributing 45% of the final grade. Each of the exams will cover theory (with a weight of 65%) and problem-solving (with a weight of 35%) contents. The remaining 10% of the grade will complement the exam scores only if both exams have been successfully passed and will be based on the level of participation in the problem-solving sessions, requiring the completion of the assigned tasks within the established deadlines. To pass the subject the student must obtain 5 over 10 or higher in each exam. If the event of failing to pass any of the exams, a reassessment exam is scheduled at the end of the semester. To participate in the reassessment exam, students must have been previously assessed in a set of activities the weight of which equals a minimum of two thirds of the total grade of the subject or module. Students will obtain the "Not Evaluable" qualification when the evaluation activities carried out have a weight lower than 67% of the final grade. Students that, having passed the exams, want to improve their grades may also take the reassessment exam. In the event of taking the reassessment exam, students implicitly renounce to their previously obtained grades. #### SINGLE ASSESSMENT Single common exam that includes both, theory and questions corresponding to the problem-solving sessions. The single assessment consists of a single exam that includes the contents of the entire theory program with a weight of 60% and problem-solving with a weight of 40%. The grade obtained in this exam constitutes 90% of the final grade of the subject. The remaining 10% corresponds to the evidence of problem-solving sessions. The delivery of evidence corresponding to the problem-solving sessions will follow the same procedure used for the continuous assessment. The single assessment exam will be performed in the same date fixed in the calendar for the last continuous assessment exam and the same recovery system will be applied as for continuous assessment. ### **Assessment Activities** | Title | Weighting | Hours | ECTS | Learning Outcomes | |--|-----------|-------|------|--| | Exam 1. Theory (65%) + Problem-solving (35%) | 45% | 1.5 | 0.06 | 1, 2, 3, 17, 16, 15, 12, 14, 13, 5, 9, 8, 10, 11, 4, 19, 18, 6, 7 | | Exam 2. Theory (65%) + Problem-solving (35%) | 45% | 1.5 | 0.06 | 1, 2, 3, 17, 16, 15, 12, 14, 13, 5, 9, 8, 10, 11,
4, 19, 18, 6, 7 | | Participation in class activities | 10% | 0 | 0 | 1, 2, 3, 17, 16, 15, 12, 14, 13, 5, 9, 8, 10, 11,
4, 19, 18, 6, 7 | ## **Bibliography** ## Software There is no specific software associated with this subject.