

Foundations of Signals and Systems

Code: 102690 ECTS Credits: 6

Degree	Туре	Year	Semester
2500895 Electronic Engineering for Telecommunication	FB	1	2
2500898 Telecommunication Systems Engineering	FB	1	2

Contact

Name: Rosana Rodriguez Martinez
Email: rosana.rodriguez@uab.cat
Teaching groups languages

You can check it through this <u>link</u>. To consult the language you will need to enter the CODE of the subject. Please note that this information is provisional until 30 November 2023.

Teachers

Javier Martin Martinez
Jose Lopez Vicario

Prerequisites

The student must have an adequate level of calculus (real and complex variable functions, complex numbers, differentiation and integration) and basic circuit theory (Kirchhoff laws, Thévenin-Norton equivalents, superposition principle, voltage-current laws of elementary devices and basic circuital analysis).

Objectives and Contextualisation

- Introduce the student to the analysis and characterization of signals and systems, with emphasis on linear systems.
- Learn the Laplace transform and its properties.
- Learn how to apply the Laplace transform to circuit analysis.
- Learn and apply the concept of transfer function of an LTI system.
- Learn how to obtain the Bode diagram of a system.
- Learn the Fourier transform and its properties.
- Learn how to apply the Fourier transform to periodic signals (Fourier series) and the limitation in time (windowing) and frequency (Gibbs phenomenon).
- Learn and apply the concepts of energy and power of a signal.
- Learn and know how to apply the concepts of correlation and spectrum of signals

Competences

Electronic Engineering for Telecommunication

- Communication
- Develop personal attitude.
- Develop personal work habits.
- Develop thinking habits.
- Learn new methods and technologies, building on basic technological knowledge, to be able to adapt to new situations.

Telecommunication Systems Engineering

- Communication
- Develop personal attitude.
- Develop personal work habits.
- Develop thinking habits.
- Learn new methods and technologies, building on basic technological knowledge, to be able to adapt to new situations.

Learning Outcomes

- 1. Analyse and design analogue signal processing diagrams.
- 2. Apply the basic concepts of linear systems and the related functions and transforms, to resolve engineering problems.
- 3. Autonomously learn new and suitable knowledge and techniques for devising, developing or exploiting telecommunication systems, especially with regard to basic signal processing subsystems.
- 4. Communicate efficiently, orally and in writing, knowledge, results and skills, both professionally and to non-expert audiences.
- 5. Describe the fundamental parameters of a communications system, in the functional aspect.
- 6. Develop curiosity and creativity.
- 7. Develop independent learning strategies.
- 8. Develop the capacity for analysis and synthesis.
- 9. Manage available time and resources.
- 10. Manage available time and resources. Work in an organised manner.
- 11. Use computer tools to research bibliographic resources or information on telecommunications and electronics.
- 12. Work autonomously.

Content

- 1. Introduction to the subject. Signals and systems.
 - 1. Signals. Independent variable transforms and basic signals.
 - 2. System properties: linearity, invariance, causality and stability.
 - 3. Linear and time invariant systems (LTI). Convolution equation.
- 3. The Laplace transform.
 - 1. Laplace transform. Definition. Properties.
 - 2. Solution of differential equations using the Laplace transform.
 - 3. Obtaining the inverse Laplace transform.
- 5. Applications of the Laplace transform.
 - 1. Analysis of circuits with capacitors and inductors.
 - 2. Transfer function of a system. Definition and obtention of the impulse response.
 - 3. Pole and zero diagrams and system stability.
 - 4. Permanent response of a system. Bode diagrams.
- 7. The Fourier transform.
 - 1. Definition of the Fourier transform.

- 2. Transform of basic signals.
- 3. Properties of the Fourier transform.
- 4. Limitation in frequency (Gibbs phenomenon) and limitation in time (windowing).
- 5. Fourier transform of periodic signals. The Fourier series.
- 9. Correlation and spectrum of deterministic signals.
 - 1. Energy and power
 - 2. Correlation and energy spectrum.
 - 3. Correlation and power spectrum

Methodology

The course consists of:

- Master classes where the teacher explains the basic concepts of the subject.
- Problem solving classes where the teacher solves problems on the blackboard.
- Guided problem classes, where the students solve the problems and the teacher supervises and solves doubts.
- Troubleshooting online.
- The communication tool with the students will be the UAB Virtual Campus: https://cv.uab.cat.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Activities

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Master class	20	0.8	1, 2, 5
Problems solving	15	0.6	1, 5, 8, 6
Summary lessons	10	0.4	1, 2, 4, 5, 8
Type: Supervised			
Seminars	5	0.2	1, 2, 3, 4, 5, 8, 6, 10
Type: Autonomous			
Autonomous work	70	2.8	1, 2, 3, 7, 8, 6, 10, 12, 11
On-line problems solving	10	0.4	1, 2, 3, 4, 5, 9, 10, 11

Assessment

The subject is assessed according to 2 different types of assessment:

- 3 written tests (P1, P2 and P3) of topic 1 (P1), of topics 2 and 3 (P2) and of topics 4 and 5 (P3) with a weight of 90% (P1, P2 and P3 each have a weight of 30%). This part can be recoverable in the final exam.
- Online problem solving with a weight of 10% and non-recoverable.

The final mark (NF) of the subject, as long as the marks P1, P2, P3 are equal to or higher than 2.0 points, is calculated as:

$$NF = (P1 + P2 + P3) * (9/30) + (Pol1r + Pol2r + Pol3r + Pol4r) * (1/40)$$

If any of the grades P1, P2, P3 are <2 and it is true that 5 > NF >= 3.5, then NF=3.5

If any of the scores P1, P2, P3 are <2 and it is not true that 5 >NF >= 3.5, then NF= min{P1, P2, P3}

Due to academic needs, and according to the development of the course, the evaluation procedures may be adjusted by the teacher responsible for the subject.

Recovery process:

- The final exam of the subject will consist of 3 different parts: Pr1 (topic 1), Pr2 (topics 2 and 3) and Pr3 (topics 4 and 5), so that the marks Pr1 to Pr3 are obtained.
 - The student can take the parts that he deems appropriate and the continuous evaluation note will be replaced in all cases by the one obtained in the recovery test. For example, if the student appears in parts 1 and 3 obtaining Pr1 and Pr3, the NF will be calculated exactly as described above but substituting P1 for P1r and P3 for P3r.
- Once the student begins the recovery exam, he must necessarily hand in some answer sheet for correction. In other words, the possibility of entering the examination room and leaving it without handing in anything for correction is not contemplated.
 - The student can take the Pr1-Pr3 tests whenever s/he has participated in a set of activities that represents at least two thirds of the total grade of the subject.
- With the recovery processes established in the subject, all students have the opportunity to be evaluated twice in each of the evaluation activities, except for evaluations related to online work, which are non-recoverable. For this reason, no additional evaluation tests will be done if a student cannot attend one or more of the tests.

Programming of evaluation activities:

• The calendar of the evaluation activities will be given on the first day of the subject and will be made public through the Virtual Campus and on the website of the School of Engineering, in the exams section. The defense of the online activities will only be published in the CV of the subject.

Evaluation for students repeating the subject:

· No differences with respect to first-time students

Procedure for reviewing the marks:

• For each evaluation activity, the procedure to review the activity will be indicated through the Virtual Campus of the subject. In this context, claims may be made about the grade for the activity, which will be evaluated by the teaching staff responsible for the subject.

Ratings:

- Evaluation with honors (MH): it is the decision of the faculty responsible for the subject. The regulations of the UAB indicate that MH can only be granted to students who have obtained a final grade equal to or greater than 9.0. You can grant a MH up to 5% of the total number of students enrolled.
- A student will be considered not evaluable (NA) if s/he does not obtain a minimum grade of 0.5 in P1, P2, P3 or in their respective recovery (Pr1, Pr2, Pr3).

Irregularities by the student, copy and plagiarism:

• Without prejudice to other disciplinary measures deemed appropriate, irregularities committed by the student that may lead to a variation in the grade of an evaluation act will be graded with a zero. Therefore, copying, plagiarism, cheating, letting copying, etc. in any of the evaluation activities will involve suspending with a zero. The evaluation activities qualified in this way and by this procedure will not be recoverable.

Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
On-line problems solving 1 (Pol1r)	2,5%	2.5	0.1	1, 2, 3, 5, 7, 8, 6, 9, 10, 12, 11
On-line problems solving 2 (Pol2r)	2,5%	2.5	0.1	1, 2, 3, 5, 7, 8, 6, 9, 10, 12, 11
On-line problems solving 3 (Pol3r)	2,5%	2.5	0.1	1, 2, 3, 5, 7, 8, 6, 9, 10, 12, 11
On-line problems solving 4 (Pol4r)	2,5%	2.5	0.1	1, 2, 3, 5, 7, 8, 6, 9, 10, 12, 11
Recuperation exam chapters 1-5 (Pr1, Pr2, Pr3)	90%	4	0.16	1, 2, 3, 4, 5, 8, 10, 12
Written exam chapter 1 (P1)	30%	2	0.08	1, 2, 3, 4, 5, 8, 9, 10, 12
Written exam chapter 2 and 3 (P2)	30%	2	0.08	1, 2, 3, 4, 5, 7, 8, 10, 12
Written exam chapter 4 and 5 (P3)	30%	2	0.08	1, 2, 3, 4, 5, 8, 10, 12

Bibliography

- 1. Haykin /Van Ven, "Señales y sistemas", Limusa Wiley.
- 2. A. V. Oppenheim, "Signals and Systems", Prentice Hall.
- 3. A. B. Carlson, "Communication Systems", McGraw Hill.
- 4. Donald E. Scott, "Introducción al análisis de circuitos", McGraw Hill.
- 5. Leon O. Chua, "Linear and non linear circuits", McGraw Hill.
- 6. H. Baher, "Analog & digital signal processing", John Wiley.
- 7. Thomas Shubert, "Active and non-linear electronics".
- 8. A. Papoulis, M. Bertran, "Sistemas y circuitos", Marcombo.

Software

Not considered