

Compatibilidad Electromagnética

Código: 102725 Créditos ECTS: 6

Titulación	Tipo	Curso	Semestre
2500895 Ingeniería Electrónica de Telecomunicación	ОТ	4	2

Contacto

Nombre: Enrique Alberto Miranda Castellano Correo electrónico: enrique.miranda@uab.cat

Idiomas de los grupos

Puede consutarlo a través de este <u>enlace</u>. Para consultar el idioma necesitará introducir el CÓDIGO de la asignatura. Tenga en cuenta que la información es provisional hasta el 30 de noviembre del 2023.

Equipo docente

Enrique Alberto Miranda Castellano

Prerrequisitos

- Analisis vectorial (vectores, campos escalares y vectoriales, operadores diferenciales: gradiente, rotor, divergencia, laplaciano)
- Fundamentos de electromagnetismo (Ley de Coulomb, ley de Ampere, teorema de Gauss, propagación de ondas electromagneticas en lineas de transmisión y en el vacio)
- Análisis de circuitos

Objetivos y contextualización

El objetivo de este curso es formar a los estudiantes del grado de telecomunicaciones en los modelos y los metodos frecuentemente utilizados en el campo de la compatibilidad electromagnetica (EMC). Para este fin se presentaran las formulaciones basicas utilizadas para describir el fenomeno de interferencia y la compatibilidad electromagnetica en diversos sistemas. Se estudiaran las normativas nacionales e internacionales en vigor. Exploraremos las distintas fuentes de interferencia y la forma en que se miden utilizando equipamiento profesional.

Competencias

Actitud personal

- Aplicar la legislación necesaria durante el desarrollo de la profesión de Ingeniero Técnico de Telecomunicación y manejar especificaciones, reglamentos y normas de obligado cumplimiento.
- Aprender nuevos métodos y tecnologías en base a sus conocimientos básicos y tecnológicos, con gran versatilidad de adaptación a nuevas situaciones.
- Comunicación
- Concebir, diseñar, implementar y operar equipos y sistemas electrónicos, de instrumentación y de control.
- Dirigir las actividades objeto de los proyectos del ámbito de sistemas electrónicos.
- Hábitos de pensamiento
- Hábitos de trabajo personal
- Trabajar en un grupo multidisciplinar y en un entorno multilingüe, y comunicar, tanto por escrito como de forma oral, conocimientos, procedimientos, resultados e ideas relacionadas con las telecomunicaciones y la electrónica.
- Trabajo en equipo
- Ética y profesionalidad

Resultados de aprendizaje

- 1. Analizar y especificar los parámetros fundamentales de un sistema de comunicaciones, des del punto de vista de la instrumentación.
- 2. Analizar y solucionar los problemas de interferencias y compatibilidad electromagnética.
- 3. Aplicar de manera autónoma nuevos conocimientos y técnicas adecuadas para la concepción, el desarrollo o la explotación de sistemas electrónicos.
- 4. Comunicar eficientemente de forma oral y/o escrita conocimientos, resultados y habilidades, tanto en entornos profesionales como ante públicos no expertos.
- 5. Desarrollar estrategias de aprendizaje autónomo.
- 6. Desarrollar la capacidad de análisis y de síntesis.
- 7. Desarrollar la curiosidad y la creatividad.
- 8. Desarrollar un pensamiento y un razonamiento crítico.
- 9. Documentar los sistemas de instrumentación diseñados, en base a las normativas vigentes.
- Evaluar las ventajas e inconvenientes de diferentes alternativas tecnológicas de despliegue o implementación de sistemas electrónicos, desde el punto de vista de las perturbaciones y el ruido.
- 11. Identificar la normativa y la regulación de las telecomunicaciones en los ámbitos nacional, europeo e internacional en el ámbito de la compatibilidad electromagnética.
- 12. Prevenir y solucionar problemas.
- 13. Realizar la especificación, implementación, documentación y puesta a punto de equipos y sistemas, electrónicos, de instrumentación y de control, considerando tanto los aspectos técnicos como las normativas reguladoras correspondientes.
- 14. Respetar la diversidad y pluralidad de ideas, personas y situaciones.
- 15. Trabajar cooperativamente.
- 16. Trabajar de forma autónoma.

Contenido

Contenido del curso:

1.- Introducción a la EMC

Motivación. Ejemplos introductorios. Definiciones y terminología

Modelo fuente-acoplo-víctima

Fuentes de interferencia naturales y artificiales

Mecanismos de acoplamiento: interferencia conducida y radiada

Conceptos de inmunidad y susceptibilidad

Espectros de señales. Análisis de señales pulsadas

Dimensión eléctrica

Unidades comúnmente utilizadas en EMC. Decibelio

2.- Principios electromagnéticos básicos

Análisis vectorial. Sistemas de coordenadas

Campos estáticos. Potenciales escalares y vectoriales

Líneas de alta tensión. Bobinas de Helmholtz

Materiales dieléctricos y magnéticos. Cargas y corrientes equivalentes

Ecuaciones de Maxwell. Propagación de ondas electromagnéticas

Entornos de modelización en EMC

3.- Modelos de baja frecuencia

Resolución de las ecuaciones de Laplace y Poisson

Método de elementos finitos y diferencias finitas

Circuitos de parámetros concentrados

Modelos de acoplamiento circuital: acoplamiento por conducción e inducción.

Diafonía en circuitos impresos (crosstalk)

Descarga electrostática (ESD). Modelización y técnicas de prevención

4.- Modelos de alta frecuencia

Ecuaciones de las líneas de transmisión con y sin pérdidas

Interacción de campos electromagnéticos con líneas de transmisión

Lineas de transmisión multiconductoras

Ecuación de Baum-Liu-Tesche

Método de diferencias finitas en el dominio del tiempo

Efectos de la caída de un rayo sobre una línea

Campos de radiación y de inducción

Radiación de fuentes extensas y aberturas

Método de momentos. Acoplamiento de fuentes extensas

4.- Apantallamiento

Topología electromagnética en EMC

Atenuación de la interferencia conducida

Efectividad del blindaje. Blindaje en circuitos integrados

Blindaje eléctrico a baja y alta frecuencia

Blindaje magnético a baja y alta frecuencia

Filtros de ferrita y filtros pasantes

Sistemas absorbentes

Diseño de recientos con aberturas

5.- Mediciones y Control

Desarrollo de sistemas bajo criterios de EMC

Sistemas de preconformidad

Métodos y equipos para la medición de interferencias

Receptores y LISN. Factor de antena

Ambientes de medición. Planos de reverberación

Cámaras anecoicas y celdas TEM

6.- Normativas y aplicaciones

Organismos reguladores

Estándares y normativa internacional sobre EMC

Declaración de conformidad. Cadena de responsabilidades

Electrodomésticos

Equipos de tecnología de la información

Arquitectura

Transportes

Equipamiento médico

Aspectos vinculados a la iluminación

7.- Aspectos biológicos de los campos electromagnéticos

Sociedad y campos electromagnéticos

Espectro electromagnético

Radiación ionizante y no ionizante

Baja frecuencia

RF y microondas

Efectos térmicos y lipoatrofia

Normativa y limites de exposición

Metodología

A lo largo del curso, el alumno presentara actividades asignadas por el profesor relacionadas con el temario de la Unidad bajo estudio. Los estudiantes llevaran a cabo practicas de simulacion relacionadas con los temas abordados en las clases teoricas. Los estudiantes tambien presentaran un trabajo oral de acuerdo a las directivas del profesor. El curso culmina con una evaluación individual acerca del contenido teorico practico del curso.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Actividades

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Dirigidas	15	0,6	2, 7, 13, 15
Dirigidas	30	1,2	1, 2, 10, 8, 9, 11, 14
Tipo: Supervisadas			
Supervisadas	10	0,4	5, 12
Tipo: Autónomas			
Autónomas	20	0,8	3, 6, 8, 11, 12
Autónomas	20	0,8	1, 5, 6, 11

Evaluación

Actividades:

- 4 practicas (0.56) i 1 presentación oral (0.14) (70% de la nota)
- 1 evaluacion individual (30% de la nota)

La nota mínima requerida para la aprobación de la prueba individual e 5/10.

Se require un minimo de cinco puntos para aprobar el curso.

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Actividad 1	ver abajo	40	1,6	1, 2, 3, 10, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16
Actividad 2	ver abajo	10	0,4	5, 6, 8, 13, 16
Actividad 3	ver abajo	5	0,2	4, 5, 7, 14, 15

Bibliografía

Bibliografía

- C. R. Paul, Introduction to electromagnetic compatibility. Second Edition, John Wiley & Sons, 2006
- C. Christopoulos, Principles and techniques of electromagnetic compatibility, CRC Press, 1995.
- J. Sebastian, Fundamentos de compatibilidad electromagnética, Addison-Wesley 1999.
- C. R. Paul, Analysis of multiconductor transmission lines, IEEE Press, 2008.

Addicional

- F.M.Tesche, M.V.Ianoz and T. Karlsson, EMC Analysis Methods and Computational Models, Wiley, 1997.
- N. Ellis, Interferencias Eléctricas Handbook, Paraninfo, 1999.
- T. Williams, EMC Control y limitación de energía electromagnética, Paraninfo, 1997.
- D. Weston, Electromagnetic Compatibility, Principles and Applications, Dekker, 2001.
- R. Leventhal, Semiconductor modeling for simulating signal, power and electromagnetic integrity, Springer, 2006.

Software

Los programas de simulación los proporciona el profesor