

2023/2024

Microbiología, Inmunología y Cultivos Celulares

Código: 103275 Créditos ECTS: 8

Titulación	Tipo	Curso	Semestre
2501922 Nanociencia y Nanotecnología	ОВ	3	2

Contacto

Nombre: Andreu Blanquer Jerez

Correo electrónico: andreu.blanquer@uab.cat

Idiomas de los grupos

Puede consutarlo a través de este <u>enlace</u>. Para consultar el idioma necesitará introducir el CÓDIGO de la asignatura. Tenga en cuenta que la información es provisional hasta el 30 de noviembre del 2023.

Equipo docente

Jose Ramon Palacio Cornide

Jose Luis Corchero Nieto

Prerrequisitos

Esta asignatura no necesita ningún requisito.

Objetivos y contextualización

La asignatura Microbiología, Inmunología y Cultivos Celulares, se imparte en el 2º semestre del 3er curso de la titulación de Nanociencia y Nanotecnología en la Facultad de Ciencias. Esta es una asignatura con un cierto grado de especialización que está dividida en tres grandes bloques (Microbiología, Inmunología y Cultivos Celulares) en la que se pretende que el alumnado adquiera unas nociones básicas para iniciarse en las metodologías utilizadas en los cultivos y manipulación de las células bacterianas, en los laboratorios de inmunología y en lel cultivo y manipulación de células eucariotas. Por eso es una asignatura con un componente práctico importante.

Objetivos de la asignatura:

- 1) Conocer la célula bacteriana
- 2) Conocer las metodologías básicas utilizadas en un laboratorio de Microbiología
- 3) Conocer los conceptos básicos de la Inmunología
- 4) Conocer las metodologías básicas utilizadas en un laboratorio de Inmunología

- 5) Conocer el equipamiento básico de un laboratorio de cultivos
- 6) Conocer las metodologías básicas utilizadas en un laboratorio de Cultivos Celulares

Competencias

- Adaptarse a nuevas situaciones.
- Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de la instrumentación y de los productos y materiales químicos y biológicos teniendo en cuenta sus propiedades y riesgos.
- Aplicar los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología a la resolución de problemas de naturaleza cuantitativa o cualitativa en el ámbito de la Nanociencia y Nanotecnología.
- Aprender de forma autónoma.
- Comunicarse de forma oral y escrita en la lengua nativa.
- Demostrar motivación por la calidad.
- Demostrar que comprende los conceptos, principios, teorías y hechos fundamentales relacionados con la Nanociencia y Nanotecnología.
- Desarrollar trabajos de síntesis, caracterización y estudio de las propiedades de materiales en la nanoescala en base a procedimientos previamente establecidos.
- Gestionar la organización y planificación de tareas.
- Interpretar los datos obtenidos mediante medidas experimentales, incluyendo el uso de herramientas informáticas, identificar su significado y relacionarlos con las teorías químicas, físicas o biológicas apropiada.
- Manipular los instrumentos y materiales estándares propios de laboratorios de ensayos físicos, químicos y biológicos para el estudio y análisis de fenómenos en la nanoescala.
- Mantener un compromiso ético.
- Mostrar sensibilidad hacia temas medioambientales.
- Obtener, gestionar, analizar, sintetizar y presentar información, incluyendo la utilización de medios telemáticos e informáticos.
- Operar con un cierto grado de autonomía e integrarse en poco tiempo en el ambiente de trabajo
- Proponer ideas y soluciones creativas.
- Razonar de forma crítica.
- Reconocer los términos relativos al ámbito de la Física, Química y Biología, así como a la Nanociencia y la Nanotecnología en lengua inglesa y utilizar eficazmente el inglés en forma escrita y oral en su ámbito laboral.
- Resolver problemas y tomar decisiones.
- Trabajar en equipo y cuidar las relaciones interpersonales de trabajo.

Resultados de aprendizaje

- 1. Adaptarse a nuevas situaciones.
- 2. Aprender de forma autónoma.
- 3. Comprender textos y bibliografía en inglés sobre Bioquímica, Biología molecular, Microbiología, Inmunología y sobre los temas relacionados con Nanociencia y Nanotecnología.
- 4. Comunicarse de forma oral y escrita en la lengua nativa.
- 5. Demostrar motivación por la calidad.
- Describir el sistema inmunitario y las bases científicas de la aplicación de los anticuerpos a los nanosensores.
- 7. Describir la biología de los microorganismos y las bases científicas que permiten su aplicación en Nanociencia y Nanotecnología.
- 8. Gestionar la organización y planificación de tareas.
- 9. Identificar los fundamentos de las técnicas de cultivo de celular.
- 10. Identificar y distinguir los protocolos de manipulación de equipamientos complejos de caracterización, análisis y manipulación de biomoléculas y células.

- 11. Identificar y ubicar el equipamiento de seguridad del laboratorio.
- 12. Interpretar los resultados obtenidos los laboratorios biológicos de Microbiología y Cultivo de células animales.
- 13. Manipular los microorganismos y células animales con seguridad.
- 14. Manipular reactivos químicos y bioquímicos con seguridad.
- 15. Mantener un compromiso ético.
- 16. Mostrar sensibilidad hacia temas medioambientales.
- 17. Obtener, gestionar, analizar, sintetizar y presentar información, incluyendo el uso de medios telemáticos e informáticos.
- 18. Operar con un cierto grado de autonomía e integrarse en poco tiempo en el ambiente de trabajo
- 19. Proponer ideas y soluciones creativas.
- 20. Razonar de forma crítica.
- 21. Realizar operaciones básicas de los laboratorios de microbiología, inmunología y cultivos celulares.
- 22. Reconocer los términos ingleses empleados en Bioquímica, Biología molecular, Microbiología, Inmunología y en los temas relacionados con Nanociencia y Nanotecnología.
- 23. Resolver problemas y tomar decisiones.
- 24. Trabajar en equipo y cuidar las relaciones interpersonales de trabajo.
- 25. Utilizar correctamente el material de laboratorio, los microorganismos y las células empleadas en los laboratorios biológicos.
- 26. Utilizar correctamente las herramientas informáticas necesarias para interpretar y exponer los resultados obtenidos.
- Utilizar las estrategias adecuadas para la eliminación segura de los reactivos, microorganismos, células y nanomateriales.
- 28. Utilizar los conocimientos de Microbiología, Inmunología y Cultivos celulares para resolver problemas y cuestiones técnicas en relación a la Nanociencia y la Nanotecnología.
- 29. Utilizar los instrumentos de los laboratorios de Bioquímica, Microbiología, Cultivos celulares y Bioanálisis con seguridad.
- 30. Valorar la peligrosidad y los riesgos del uso de muestras y reactivos, y aplicar las precauciones de seguridad oportunas para cada caso.

Contenido

Programa de teoría

Microbiología

Introducción a la microbiología
Niveles de organización
La célula bacteriana
Técnicas de observación de microorganismos
Aislamiento y técnicas de cultivo de los microorganismos
Técnicas de esterilización y conservación de los microorganismos

Inmunología

Principios básicos de la inmunología: inmunidad innata e inmunidad adquirida. El sistema inmunitario: anatomía, células y moléculas

Componentes de la inmunidad innata. Mecanismos de la inmunidad innata. Conexión entre la inmunidad innata y la adquirida

Componentes de la inmunidad adquirida. Mecanismos de la inmunidad adquirida. Respuesta inmune a patógenos

Inmunopatología. Patologías del sistema inmunitario. Patologías que afectan a la respuesta inmunitaria Tecnologías relacionadas con la respuesta inmunitaria. Inmunoterapia y immunomanipulació

Cultivos Celulares

Introducción a los cultivos celulares

Condiciones físicas y biológicas de los cultivos celulares

Organización del laboratorio y bioseguridad

Técnicas de caracterización celular

Técnicas d'estudio de la biocompatibilidad

Programa de prácticas

Microbiología

Módulo 1: Recuento de microorganismos

Módulo 2: Métodos de aislamiento de microorganismos

Módulo 3: Observación de microorganismos

Módulo 4: Identificación de microorganismos

Módulo 5: Ubicuidad y diversidad microbiana

Inmunología

Módulo 6: Separación de células de la sangre por Ficoll

Módulo 7: Análisis de las poblaciones celulares por citometría

Módulo 8: Immunocitohistoquímica para la detección de marcadores específicos con un anticuerpo monoclonal

Cultivos Celulares

Módulo 9: Cultivo de una línea celular.

Módulo 10: Congelación / descongelación de una línea celular

Módulo 11: Inducción y detección de la apoptosis en una línea celular

Módulo 12: Detección de microtúbulos por inmunocitoquímica. Valoración de las fases de la división celular

Módulo 13: Utilización de nanopartículas para el seguimiento celular. Microscopía confocal

Metodología

La asignatura de Microbiología, Inmunología y Cultivos Celulares consta de clases magistrales teóricas y de clases prácticas en el laboratorio.

Las clases magistrales teóricas se realizarán utilizando material audiovisual preparado por el profesor, material que los alumnos tendrán a su disposición en el Campus Virtual de la UAB antes de las sesiones. Las clases prácticas están diseñadas para que el alumno aprendan a utilizar el instrumental de laboratorio y complementen la formación teórica. Los alumnos realizarán un total de 13 sesiones de prácticas con un total de unas 38 h. Los alumnos trabajarán en grupos de 2, y al final de cada práctica deberán rellenar una hoja con los resultados. Estas hojas quedarán en posesión del profesorado y servirán para la evaluación de la parte práctica. Al final o durante la sesión de las prácticas se pondrá en común los resultados de los diferentes grupos y se discutirán colectivamente.

Los alumnos deberán entregar un dossier de las prácticas.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Actividades

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Classes pràcticas	38	1,52	3, 6, 7, 9, 16, 20, 22, 28
Classes teoricas	38	1,52	4, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 23, 25, 29, 27, 30
Tipo: Supervisadas			
Tutorias personalizadas	6	0,24	1, 4, 8, 20
Tipo: Autónomas			
Elaboración de informe de prácticas	4,5	0,18	2, 4, 8, 17, 18, 20, 23
Estudio individual	105	4,2	1, 2, 3, 8, 16, 17, 18, 20, 22, 23, 28

Evaluación

La asignatura de MICC (Microbiología, Inmunología y Cultivos Celulares) está formada por tres bloques. Para aprobar la asignatura se requiere una nota mínima de 5 sobre un máximo de 10 puntos en cada uno de los tres bloques (M, I y CC). Cada bloque consta de una parte de teoría y de una parte de prácticas, que representan el 75% y el 25% respectivamente, de cada bloque. Para poder superar la asignatura el alumnado debe sacar una nota igual o superior a 5 en los tres bloques de teoría (M, I y CC) y en los tres bloques de prácticas (M, I y CC).

Las actividades de evaluación programada son:

TFORÍA:

Habrá un examen independiente de cada uno de los tres bloques de la asignatura. Cada uno de estos exámenes tendrá un peso del 25% de la nota final. Para superarlos, la nota deberá ser igual o superior a 5. Notas inferiores a 5 en uno de los bloques implicará automáticamente un suspenso en el bloque y por lo tanto el alumno deberá recuperar la materia del bloque suspendido en un examen de recuperación. En este examen de recuperación, de nuevo, cada bloque se evaluará por separado y para poder aprobar la asignatura el alumnado deberá obtener una nota igual o superior a 5 en cada uno de los bloques a recuperar.

En los exámenes correspondientes a la parte teórica, el alumnado deberá responder a un mínimo del 70% de las preguntas formuladas por cada uno de los bloques para poder ser evaluado. No responder al mínimo requerido supondrá suspender el bloque automáticamente.

PRÁCTICAS DE LABORATORIO:

La nota de prácticasse obtendrá a partir de un examen independiente para cada uno de los bloques. En los bloques de Microbiología y de Cultivos Celulares además del examen se evaluará la entrega de un dossier de prácticas. La asistencia a las prácticas de laboratorio es obligatoria. La no asistencia a una, dos o tres sesiones, reduce la nota de prácticas un 20%, un 50% y un 80% respectivamente. La no asistencia a 4omás sesiones de prácticas implica un NO presentado de esta bloque.

Cada bloque se evaluará por separado y para poder aprobar el bloque el alumno deberá obtener una nota igual o superior a 5 en cada uno de los exámenes de los bloques. Notas inferiores a 5 en uno de los bloques implicará automáticamente un suspenso en el bloque y por lo tanto el alumno deberá recuperar la materia del

bloque suspendido en un examen de recuperación. De nuevo cada bloque se evaluará por separado y para poder aprobar la asignatura el alumno deberá obtener una nota igual o superior a 5 en cada uno de los bloques a recuperar.

La nota de cada bloque tendrá un peso de 8,33% de la nota final y se obtendrá de:

- -Microbiología: examen sobre el trabajo realizado en el laboratorio. Estas pruebas tendrán un peso de 100% de la nota de esta bloque.
- -Immunologia: examen sobre el trabajo realizado en el laboratorio. Estas pruebas tendrán un peso de 100% de la nota de esta bloque.
- -Cultivos celulares: a) entrega y discusión de los diferentes resultados obtenidos en las prácticas; b) examen sobre el trabajo realizado en el laboratorio; y c) cuestionario a realizar al finalizar las sesiones prácticas. Estas pruebas tendrán un peso de 40%, 40% y 20% respectivamente, de la nota de esta bloque.

EXAMEN DE RECUPERACIÓN:

Para participar en la recuperación, el alumnado debe haber estado previamente evaluado en un conjunto de actividades el peso de las cuales equivalga a un mínimo de dos terceras partes de la calificación total de laasignatura o módulo. Por tanto, el alumnado obtendrá la calificación de "No Avaluable" cuando las actividades de evaluación realizadas tengan una ponderación inferior al 67% en la calificación final

Se deberán presentar al examen de recuperación a los alumnos que no hayan superado uno o más de los bloques de los exámenes de teoría y/o prácticas, o no se hayan presentado.

Para aprobar el examen de recuperación el alumnado deberá tener una nota igual o superior a 5 en cada una de los bloques examinados.

NOTA FINAL: La nota final de la asignatura se obtendrá a partir de la de la fórmula siguiente,

NOTA FINAL = [Teoría ((M + I + CC) / 3) * 0,75] + [Prácticas ((M + I + CC) / 3) * 0,25]

El alumnado que en alguno de los bloques de teoría y/o de prácticas tengan una nota inferior a 5 tendrán la asignatura suspendida. La nota que constará en las actas será la nota más baja de los bloques suspendidos.

NO EVALUABLE: El alumnado obtendrá la calificación de "No Evaluable" cuando las actividades realizadas tengan una ponderación inferior al 67% en la calificación final

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Entrega resultados practicas laboratorio	3,5%	0,5	0,02	1, 2, 3, 4, 5, 8, 10, 12, 15, 16, 17, 18, 19, 20, 21, 23, 26, 28
Examen teoria	75%	4	0,16	3, 6, 7, 9, 20, 22, 28
Resultados practicas	3,5%	1	0,04	4, 5, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 29, 27, 30
examen pràcticas	18%	3	0,12	3, 20, 22

Bibliografía

Relevant Bibliography

Microbiology:

- *Madigan, MT, JM Martinko, PV Dunlap, DP Clark. 2015. Brock Biology of Microorganisms. 14^a ed. Pearson Educación, S.A. (en paper i electrònic)
- *Willey, J, LM Sherwood, CJ Woolverton. 2009. Microbiología de Prescott, Harley y Klein. 7ª ed. MacGraw-Hill-Interamericana de España. ISBN: 978-84-481-6827-8.(en paper i electrònic)
- *Jennifer Louten. 2016. Essential human virology. Elsevier Ed. ISBN: 978-0-12-800947-5
- *Microbiología: conceptos esenciales. Jordi Barbé García [i 39 més]. Editorial Médica Panamericana | 2019 Immunology:
- *Inmunología J.Kuby, J.A. Owen, J. Punt, S.A. Strandord 7ma Ed 2014 (en paper i electrònic)
- *L. Fainboim, J. Geffner. *Introducción a la Inmunología Humana.* 6ª edición, 2011, Editorial Panamericana. ISBN:978-9500602709 (en paper i electrònic)
- *J. R. Regueiro, C. López Larrea, S. González Rodríguez, E. Martínez Naves. *Inmunología: Biología y patología del sistema inmunitario*, 4ª edición, 2010, Editorial Panamericana. ISBN: 978-8498350036

Cell Cultures

- * A. Doyle and J.B. Griffiths Eds. *Cell and Tissue Culture: Laboratory procedures in biotechnology.* John Wiley & Sons Ltd. 1999. ISBN: 978-0471982555 (no hi ha cap nova edició)
- * R.I. Freshney. *Culture of Animal Cells: A manual of basic technique.* 7th Ed. Wiley-Liss, Inc. 2010. (biblioteca 6e ed. en paper i electrònic). ISBN: 978-1-118-87365-6
- * J.P. Mather and D. Barnes Eds. *Animal Cell Culture Methods*. Methods in Cell Biology. Academic Press. 1998.(en paper i electrònic). ISBN: 978-0124800403

Software

No se utilizará programario