

2023/2024

Waste Management

Code: 42408 ECTS Credits: 6

Degree	Туре	Year	Semester
4313784 Interdisciplinary Studies in Environmental, Economic and Social Sustainability	ОТ	0	1

Contact

Name: Aglaia Gomez D Alessandro

Email: aglaia.gomez@uab.cat

Teaching groups languages

You can check it through this <u>link</u>. To consult the language you will need to enter the CODE of the subject. Please note that this information is provisional until 30 November 2023.

Teachers

Cristina Sendra i Sala

External teachers

Aglaia Gomez

Oscar Prado

Vanessa Abad

Prerequisites

No specific knowledge required.

Objectives and Contextualisation

Provide the knowledge needed to manage waste as a resources, energy saving and impact reduction, through Circular Economy Design framework.

Competences

 Analyse, summarise, organise and plan projects related to the environmental improvement of product, processes and services.

- Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Work in an international, multidisciplinary context.

Learning Outcomes

- 1. Choose and propose the most sustainable waste management system under current legislation and the objectives of international policies.
- 2. Communicate and justify conclusions clearly and unambiguously to both specialised and non-specialised audiences.
- 3. Estimate greenhouse gas emissions attributable to waste.
- 4. Estimate the main environmental impacts of waste management systems, whether urban, industrial or agricultural.
- 5. Quantify the chances of reducing environmental impacts and GHG on the basis of new technologies, methodologies and waste management systems.
- 6. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- 7. Work in an international, multidisciplinary context.

Content

Block 1 Waste management in a linear model

- Rreduction. Collection. Transportation compaction Evaluation. classification
- Landfills and estimation of their emissions.
- Classification of waste. Definition of a management plan.

Block 2 Waste management in the Technical Cycle

- Recyclable materials: plastic, glass, paper and cardboard, cans, batteries and accumulators.
- Recycling plants. Ecoparks and recovery areas.

Block 3 Waste management in the biological cycle

- Composting and anaerobic digestion plants. Ecoparks and recovery areas.
- Recycling plants. Ecoparks and recovery areas. Energy saving and recycling of materials and recovery
 of materials and energy. Organic matter. Other recyclable materials.
- Reapply Industrial Ecology tools (industrial symbiosis, exchange of flows, MFA, LCA Exegetical Analysis, Ecodesign, carbon footprint, ...) to design an innovative and sustainable waste management system.

Block 4. Product design eliminating the concept of waste, with Cradle to Cradle principles and the circular econor

Methodology

Lectures/oral expositions

Classroom practices

Seminars

Preparation of reports

Autonomous activity

Reading reports/papers of interest

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Activities

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Lectures	27	1.08	
Visits to case studies	3	0.12	
Type: Supervised			
Possible Visit to industrial plants	7	0.28	
Seminars Preparation/Oral Expositions	15	0.6	
Tutoring	18	0.72	
Type: Autonomous			
Preparation of reports	24	0.96	
Reading of reports/papers	20	0.8	
Self-study	30	1.2	

Assessment

This subject will be assessed continuously.

50% of the grade will be obtained by completing quizzes and evaluable ϵ The remaining 50% will be obtained through group work and its oral pres This module does not offer the Single Assessment modality, in accordan

Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Questionnaires, problem solving, and other evaluable tests	50 %	0	0	1, 4, 3, 5, 6
Reports delivery and oral presentations	50 %	6	0.24	1, 4, 3, 6, 2, 7

Bibliography

- Materiales del campus virtual de la UAB. (intranet UAB, campus virtual)
- Handbook Zero Waste, ZERO WASTE PROJECT (1G-MED08-533).
 http://icta.uab.cat/ecotech/zero_waste/Handbook/Final_Handbook.pdf
- Cara Brower; Rachel Mallory; Zachary Ohlman. 2005. Experimental Eco>Design. Suiza. Editorial Rotovision. ISBN 2-88046-817
- Han Brezet, Carolien Van Hemel. 1997. Ecodesign. A promising approach to sustainable production and consumption. United Nations Publications, Paris Henrik Wenzel; Michael Hauschild; Leo Alting.1997. Environmental Assessment of Products (vol.1). Methodology, tools and case studies in product development. Chapman & Hall
- Bilitewski, B., Härdtle, G., Marek, K., Weissbach, A., Boeddicker, H. Waste management. 1997.
 Springer (Germany).
- Lund, H. F., Manual McGraw-Hill de reciclaje. McGraw-Hill/Interamericana de España. 1996. (Madrid).
- Landreth, R. E., Rebers, P. A. Municipal Solid Wastes. Problems and Solutions.CRC Press, Inc., 1997. (USA)
- Solid waste processing and resource recovery. Handbook of environmental engineering. Vol 2.
 Lawrence K. Wang i Norman C. Pereira. Clifton (1980).
- Perry's Chemical engineer's handkook. (section 26-31).
- Roger Tim Haug. Compost engineering. Principles and practice. Technomic Publishing C.Inc. 1980. (Lancaster).
- Tchobanoglous, G., Theisen, H., Vigil, S. Gestión integral de residuos sólidos. McGraw-Hill. Madrid (1994).
- Crdale to Cradle Product Innvoation Institute www.c2ccertified.org

Software

Not applicable.