

Laboratorio integrado 2

Código: 100885 Créditos ECTS: 3

2024/2025

Titulación	Tipo	Curso
2500252 Bioquímica	ОВ	1

Contacto

Nombre: Maria Plana Coll

Correo electrónico: maria.plana@uab.cat

Equipo docente

Andromeda Celeste Gomez Camacho Xavier Solans Monfort Ignasi Roig Navarro

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Prerrequisitos

El estudiante ha de cursar simultáneamente o haber cursado las asignaturas de teoría, que se imparten durante el mismo semestre. correspondientes a los contenidos de las prácticas de esta asignatura,

Para poder asistir a las clases de laboratorio es necesario que el estudiante justifique haber superado las pruebas de bioseguridad y de seguridad que encontrará en el Campus Virtual y ser conocedor y aceptar las normas de funcionamiento de los laboratorios de la Facultad de Biociencias.

El test se responde en el correspondiente espacio del Campus Virtual y la información que se debe consultar se encuentra en el espacio de comunicación del Grado en Bioquímica.

Se aconseja a los estudiantes revisar los contenidos teóricos en los que se basa esta asignatura.

Objetivos y contextualización

La asignatura de Laboratorio Integrado 2 forma parte de un conjunto de seis asignaturas que se distribuyen a lo largo de los seis primeros semestres del Grado en Bioquímica.

El objetivo formativo de estas asignaturas es la adquisición de competencias prácticas del estudiante.

Los contenidos se organizan en orden creciente de complejidad, asociados a las necesidades y la adquisición

de los contenidos teóricos.

Durante el Laboratorio Integrado II el estudiante adquiere competencias prácticas en los contenidos:

- Termodinámica y Cinética
- Histología
- Microbiología
- Química Orgánica de los Procesos Bioquímicos
- Bioquímica I.

Las prácticas en el laboratorio se centran en el aprendizaje de técnicas básicas específicas de cada campo y en las características propias de trabajo en el laboratorio.

Módulo Bioquímica I

- -Ser capaz de escoger y preparar el sistema tampón de pH adecuado.
- -Ser capaz de realizar un proceso de producción de proteína heteróloga, identificando las diferentes etapas del proceso, y los parámetros que se deben controlar.
- -Ser capaz de utilizar la cromatografía hidrofóbica en la purificación de proteínas.
- -Ser capaz de poder realizar amplificaciones de fragmentos concretos de ácido nucleico con la técnica de la reacción en cadena de la polimerasa (PCR), conociendo los parámetros que son críticos en el diseño de los cebadores, y en la realización de la reacción de la PCR.
- -Ser capaz de realizar electroforesis en geles de agarosa como herramienta habitual en la separación y identificación de fragmentos de ácido nucleico.

Módulo Química Orgánica de los Procesos Bioquímicos

Objetivos:

Dominio de las técnicas experimentales empleadas en los laboratorios de química orgánica, incluyendo reflujo, extracción líquido/líquido, filtración de ocho funciones, purificación por recristalización y reacciones de oxidación/reducción (Redox).

Módulo Histología

Saber aplicar técnicas básicas histológicas para la diagnosis microscópica.

Identificar al microscopio diversos tejidos animales y sus componentes celulares y extracelulares.

Módulo Microbiología

- Comprender y saber aplicar técnicas básicas de laboratorio para trabajar experimentalmente con microorganismos.
- Saber realizar cálculos básicos para determinar parámetros microbiológicos.
- Evaluar la presencia de microorganismos, su diversidad y capacidad de propagación en todo tipo de ambientes.

Competencias

- Actuar con responsabilidad ética y con respeto por los derechos y deberes fundamentales, la diversidad y los valores democráticos.
- Actuar en el ámbito de conocimiento propio valorando el impacto social, económico y medioambiental.
- Aplicar las normas generales de seguridad y funcionamiento de un laboratorio y las normativas específicas para la manipulación de diferentes sistemas biológicos
- Aplicar las técnicas principales de utilización en sistemas biológicos: métodos de separación y caracterización de biomoléculas, cultivos celulares, técnicas de DNA y proteínas recombinantes, técnicas inmunológicas, técnicas de microscopia...
- Colaborar con otros compañeros de trabajo
- Diseñar y poner a punto protocolos de laboratorio, incluyendo aspectos de seguridad y salud
- Interpretar resultados experimentales e identificar elementos consistentes e inconsistentes

Resultados de aprendizaje

- 1. Actuar con responsabilidad ética y con respeto por los derechos y deberes fundamentales, la diversidad y los valores democráticos.
- 2. Actuar en el ámbito de conocimiento propio valorando el impacto social, económico y medioambiental.
- 3. Aplicar las normas básicas de seguridad relacionadas con el crecimiento de microorganismos
- 4. Aplicar y conocer las técnicas de cultivos de microorganismos y virus útiles en estudios de bioquímica y biología molecular
- 5. Colaborar con otros compañeros de trabajo
- 6. Demostrar una visión crítica en el seguimiento e interpretación de protocolos experimentales
- 7. Determinar las características genéticas (composición alélicas) de diferentes organismos mediante la utilización de técnicas clásicas de genética
- 8. Identificar los sistemas celulares útiles en estudios de bioquímica y biología molecular
- 9. Interpretar resultados experimentales e identificar elementos consistentes e inconsistentes
- 10. Utilizar la metodología adecuada para el estudio de los diferentes tipos de muestras biológicas
- 11. Utilizar las técnicas básicas de manipulación y análisis de proteínas y ácidos nucleicos
- 12. Utilizar las técnicas básicas de un laboratorio de Química para el estudio de biomoléculas
- 13. Utilizar los métodos de eliminación de los diferentes tipos de productos de desecho originados en un laboratorio de Bioquímica y Biología Molecular

Contenido

La asignatura se estructura en:

Módulo Histología

Práctica 1: Iniciación a las técnicas histológicas para el procesamiento de material animal. Identificación microscópica de los tejidos epitelial, conjuntivo y adiposo.

Práctica 2: Elaboración y tinción de frotis de sangre de oveja. Identificación microscópica de los elementos sanguíneos y los tejidos cartilaginoso y óseo.

Práctica 3: Identificación microscópica de los tejidos muscular y nervioso

Módulo. Bioquímica

Sesiones de prácticas de 4h cada

Práctica 1 :. Expresión y purificación proteínas heterólogas (esta práctica abarca las tres sesiones): transformación con el vector de expresión. Preparación de disoluciones tamponants

Práctica 2: Expresión y purificación proteínas heterólogas: inóculo de los transformantes en el medio de cultivo. Amplificación de un gen mediante la reacción en cadena de la polimerasa (PCR): reacción de PCR.

Práctica 3: Expresión y purificación proteínas heterólogas: lisis y purificación mediante cromatografía hidrofóbica. Amplificación de un gen mediante la reacción en cadena de la polimerasa (PCR): análisis mediante electroforesis en gel de agarosa

Termodinámica y Cinética

contenidos

1. Uso del calorímetro para determinar entalpías de cambio de fase y reacción.

Determinar la capacidad calorífica del calorímetro, utilizando el método de las mezclas.

Medir el calor latente del hielo derretido y la entalpía de reacción de una neutralización ácido-base.

2.- Cinética de la reacción de violeta de metilo en medio básico.

Determinar la pseudo constante de velocidad para la reacción del violeta de metilo en ambiente básico en exceso de iones hidroxilo y a temperatura ambiente.

Determinar el orden de la reacción con respecto al hidróxido y al violeta de metilo y la constante de velocidad.

Módulo Química Orgánica de los Procesos Bioquímicos

contenidos

PRÁCTICA 1.- SN1: SÍNTESIS DE 2-CLORO-2-METILBUTANO A PARTIR DE 2-METIL-2-BUTANOL

Objetivos: Dominio de las técnicas experimentales de cristalización, recristalización, filtración por succión, determinación del punto de fusión y cromatografía de capa fina.

PRÁCTICA 2.- OXIDACIÓN DE UN GRUPO METILO A CARBOXILO OBTENCIÓN DEL ACIDO p-NITROBENZOICO A PARTIR DE p-NITROTOLELIENO

módulo Microbiología

Sesiones diarias de prácticas de 3h cada

Práctica 1. Aislamiento, observación, caracterización e identificación de microorganismos

Práctica 2. Métodos de recuento de microorganismos

Práctica 3. Ubicuidad y diversidad microbiana

Práctica 4. Cinética de crecimiento de un microorganismo

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
clases de prácticas en el laboratorio	56	2,24	3, 4, 5, 7, 8, 9, 6, 10, 11, 12, 13
Tipo: Supervisadas			
Tutorías	2	0,08	4, 7, 8, 9, 6, 10, 11, 12

Tipo: Autónomas			
Estudio	7	0,28	3, 4, 7, 8, 9, 6, 10, 11, 12, 13

Las sesiones prácticas se impartirán en grupos reducidos de alumnos (de unos 20 por sesión) en el laboratorio. Están diseñadas para aprender a utilizar el instrumental técnico y complementar la formación teórica.

La asistencia a las clases de esta asignatura es obligatoria dado que implican una adquisición de competencias basadas en el trabajo práctico.

Antes de empezar una sesión de prácticas el alumno debe haber leído el protocolo y conocer por tanto, los objetivos de la práctica, los fundamentos y los procedimientos que debe realizar. En el caso de que se tenga que hacer cualquier cálculo para hacer la práctica en cuestión, el alumno les habrá hecho previamente a la entrada en el laboratorio.

En su caso, debe conocer las medidas de seguridad específicas y de tratamiento de residuos.

En las sesiones de prácticas necesario:

- Protocolo y, en su caso, el cuestionario.
- Una libreta para recoger la información del trabajo experimental.
- Bata de laboratorio.
- Gafas de protección.
- Rotulador permanente.

módulo Histología

Las prácticas suponen la confección de preparaciones microscópicas, diagnóstico microscópico y entrega individual de cuestionarios.

Los estudiantes dispondrán de un manual de prácticas detallado al inicio del curso. Para conseguir un buen rendimiento y adquirir las competencias correspondientes de esta asignatura es imprescindible una lectura comprensiva de la práctica propuesta antes de su realización.

El seguimiento de la clase práctica también implicará la recopilación individual de las observaciones microscópicasen un dossier de actividades. Al final de cada sesión habrá que responder individualmente y en un tiempo limitado a un cuestionario.

La asistencia a las clases prácticas es obligatoria

Módulo de Bioquímica:

El alumno imprimirá el guión de prácticas con anterioridad a la sesión práctica y se preparará la práctica con anterioridad, indagando en la Bibliografía sobre lo que no se lo haya quedado claro.

En el laboratorio sólo se hará directamente el procedimiento experimental, y se podrán plantear el dudas surgidas al profesor de prácticas. Posteriormente, en la fecha fijada por el profesor, el alumno entregará un cuestionario (también disponible en el CV) donde contestará a cuestiones planteadas en base a los resultados obtenidos y la metodología empleada en las sesiones de laboratorio

Módulo de Microbiología:

Al principio de la asignatura el alumno recibirá un Manual con el trabajo práctico que deberá desarrollar. Este se encontrará disponible en el Campus Virtual de la asignatura o bien donde le indique el profesorado. Estas prácticas se impartirán en tres grupos reducidos de alumnos, e incluyen 5 sesiones de tres horas cada una a razón de una sesión por día durante toda una misma semana.

Para poder asistir a las clases prácticas de laboratorio necesario que el estudiante haya superado el test de seguridad que encontrará en el apartado Seguridad en los Laboratorios del Campus Virtual de la facultad. Además, deberá cumplir la normativa de trabajo en un laboratorio de Microbiología que encontrará indicada en el propio Manual. En cada sesión de prácticas es obligatorio que el alumno lleve su propia bata, gafas de protección, encendedor, rotulador permanente, calculadora, una libreta para anotar las observaciones realizadas y el Manual de prácticas.

Para la realización de las prácticas los alumnos trabajarán en parejas y bajo la supervisión del profesor. Al inicio o durante cada sesión diaria el profesor hará una breve explicación teórica del contenido de la práctica y de las experiencias a realizar por parte de los alumnos, así como de las medidas de seguridad específicas y del tratamiento de los diferentes residuos químicos y biológicos generados. Para conseguir un buen

rendimiento y adquirir las competencias correspondientes a esta actividad es imprescindible que el estudiante haga una lectura comprensiva de los protocolos del Manual antes de su realización.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Bioquímica	21,	2	0,08	1, 5, 9, 6, 2, 10, 11, 13
Histologia Resolución de cuestionaris	19	1	0,04	1, 5, 7, 8, 9, 6, 2, 10
Microbiologia	25	2	0,08	1, 3, 4, 5, 7, 9, 6, 2, 10
Química Orgánica de los procesos bioquímicos. Examen	21,	3	0,12	1, 9, 6, 2, 12
Termodinámica y Cinética	14	2	0,08	1, 9, 6, 2, 12

Histología Animal

El sistema de evaluación se organiza en los siguientes apartados:

1) Evaluación de los contenidos al final de cada práctica (50% de la nota). Esta prueba consiste en un cuestionario y en el reconocimiento de estructuras microscópicas.

La nota de esta sección se obtiene de la media de las calificaciones obtenidas en cada práctica. En caso de no asistir a alguna de las sesiones, sin causa justificada, la nota correspondiente de la práctica será considerada como cero.

2) Prueba global de diagnóstico microscópico (50% de la nota). Esta prueba consiste en el reconocimiento de estructuras microscópicas. Esta prueba se realizará al final del curso.

Para poder ponderar las notas obtenidas en cada apartado, será imprescindible que el alumno obtenga una calificación igual o superior a 3,5 puntos (sobre 10) en cada una de ellas. Los alumnos que hayan obtenido una nota final inferior a 5 (sobre 10) deberán realizar un examen de recuperación, que consistirá en una prueba de diagnóstico microscópico y un cuestionario.

Bioquímica

Se evaluará la actitud del alumno en el laboratorio, puntualidad, llevar el material adecuado como bata, gafas de protección y guión de prácticas, previamente trabajado en casa por el alumno, así como su trabajo en el laboratorio. El alumno el día fichado por el profesor entregará un cuestionario que deberá respuesta fuera del laboratorio. La evaluación de la actitud supondrá el 25% de la nota del módulo, y la evaluación de su grado aprovechamiento mediante el cuestionario presentado el otro 75% del total de la nota del módulo).

Termodinámica y Cinética

La evaluación se llevará a cabo a través de: i) evaluación de la preparación de las prácticas a través de una prueba donde se intenta verificar que los estudiantes han preparado adecuadamente las prácticas que deben llevar a cabo (25%); comportamiento y actitud. (10%); calificación de los informes (65%).

Química Orgánica de los Procesos Bioquímicos

La calificación final de la asignatura será el resultado del 60% de la nota del exámenes del 40% de la evaluación continua de los profesores de prácticas.

La nota mínima del examen para poder aprobar la asignatura será de 3,5 sobre 10.

El examen teórico se realizará el último día de prácticas.

Para aprobar la asignatura no se permite faltar más de un día en el laboratorio, siempre y cuando se lleve un justificante.

Módulo de Microbiología:

En este módulo habrá dos tipos de actividades de evaluación:

1- Evaluación continuada del trabajo en pareja.

Los alumnos deberán entregar un informe de los resultados obtenidos que consistirá en rellenar un dossier que el profesor habrá repartido previamente.

Este informe será recogido en la última sesión de prácticas.

2- Evaluación individual de los contenidos.

Se realizará un cuestionario el último día de prácticas que consistirá en responder 15 preguntestipus test y en resolver un ejercicio práctico.

Estas actividades de evaluación tendrán un peso de 3 y 7 puntos, sobre 10, respectivamente.

Además, se tendrá en cuenta la actitud y trabajo del alumno en el laboratorio (puntualidad, utilización correcta del equipamiento de laboratorio (principalmente la bata), cumplimiento de las normativas de seguridad y la comprensión y seguimiento del Manual del asignatura). Esta evaluación no conlleva un aumento de la nota, pero puede significar la reducción de hasta un 20% de la calificación final obtenida en este módulo. Para superar el Módulo de Microbiología se debe obtener una calificación mínima de 3.5. En caso contrario, la calificación final máxima de la asignatura será un 3.5.

Dado que la asistencia a las sesiones prácticas es obligatoria, la ausencia a alguna de las sesiones debe ser justificada y no podrá ser superior al 20%. En caso de que se supere este valor, el módulo será calificado con un No Evaluable.

calificación final

La calificación final de la asignatura se obtendrá de la media ponderada de la calificación de los diferentes contenidos: 16% Histología animal, 21.5% Bioquímica, 14% Termodinámica y Cinética, 21.5% Química Orgánica de los Procesos Bioquímicos y 27% Microbiología.

Para superar la asignatura es necesario asistir a por lo menos el 80% de las sesiones programadas, obtener una calificación final igual o superior a 5 y obtener un mínima calificación de 3.5 en cada grupo de contenidos. Los estudiantes que no alcancen la calificación mínima de 3.5 en uno o más de los grupos de contenidos recibirán una calificación final máxima de la asignatura de 3.5 puntos.

El estudiante obtendrá la calificación de No Evaluable cuando haya asistido a menos del 20% de las sesiones programadas.

Evaluación única

El alumnado que se acoja a la evaluación única debe realizar las prácticas de laboratorio (PLAB) en las sesiones presenciales programadas en el calendario.

La evaluación única consiste en una pruebade síntesis única con preguntas de todos los módulos del laboratorio integrado el día programado en el calendario académico. La nota obtenida en la prueba de síntesis es el 75% de la nota final de la asignatura. La actitud durante las prácticas y la asistencia será el 25% restante.

Se aplicará el mismo sistema de recuperación que para la evaluación continuada.

Bibliografía

Química orgànica de los procesos bioquímicos

- ► D. L. Pavia, G. M. Lampman I G. S. Kriz Jr. Introduction to Organic Laboratory Techniques (3^a Ed.), Saunders, Philadelphia, 1988. ►
- M. P. Cava, M. J. Mitchell. Selected Experiments in Organic Chemistry, Benjamin, New York, 1966.

- ►J. W. McFarland. Organic Laboratory Chemistry, Mosby, St. Louis, 1969.
- ► L. M. Harwood, C. J. Moody. Experimental Organic Chemistry: Principles and Practice, Blackwell Scientific Publ., Oxford, 1989.
- ► Vogel Text Book of Practical Organic Chemistry, Vogel's (5^a Ed.) revisada per B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, Lognman, Essex, 1989.

Para los otros módulos la bibliogafia que se requiere está incluida en el guión de las prácticas

Software

No se utilitza ningún programario específico.

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(PLAB) Prácticas de laboratorio	311	Catalán	segundo cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	312	Catalán	segundo cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	313	Catalán	segundo cuatrimestre	manaña-mixto