

Biología Molecular y Biotecnología de Plantas

Código: 100963 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
2500253 Biotecnología	ОТ	4

Contacto

Nombre: Jordi Moreno Romero

Correo electrónico: jordi.moreno.romero@uab.cat

Equipo docente

Jordi Moreno Romero

Maria del Mar Marquès Bueno

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Prerrequisitos

No hay prerequisitos obligatorios, pero conocimientos en Biología Molecular son altamente recomendados.

Objetivos y contextualización

El objetivo general de esta asignatura es proporcionar los conocimientos necesarios para entender las bases moleculares de la biología vegetal, así como las técnicas y fundamentos de la biotecnología de plantas, con implicaciones sociales tan importantes como el uso de las plantas transgénicas o los alimentos genéticamente modificados (GMOs).

Al terminar el curso, el alumno debería ser capaz de tener criterios propios sobre temas de biotecnología vegetal de repercusión social, basada en conocimientos contrastables.

Los temas que se tratarán en la asignatura poder verse en el apartado de contenidos.

Resultados de aprendizaje

- 1. CM32 (Competencia) Planificar un proceso de obtención de productos biotecnológicos.
- 2. CM32 (Competencia) Planificar un proceso de obtención de productos biotecnológicos.

- 3. CM33 (Competencia) Diseñar las diferentes etapas necesarias para la obtención de productos por medios biotecnológicos.
- 4. CM33 (Competencia) Diseñar las diferentes etapas necesarias para la obtención de productos por medios biotecnológicos.
- 5. KM36 (Conocimiento) Describir las bases del diseño de un proceso de producción biotecnológico, así como las implicaciones a nivel medioambiental.
- 6. KM36 (Conocimiento) Identificar las bases del diseño de un proceso de producción biotecnológico, así como las implicaciones a nivel medioambiental.
- 7. SM33 (Habilidad) Interpretar los parámetros cinéticos de las reacciones enzimáticas, mediante métodos gráficos y utilizando programas informáticos.
- 8. SM33 (Habilidad) Interpretar los parámetros cinéticos de las reacciones enzimáticas, mediante métodos gráficos y utilizando programas informáticos.

Contenido

La asignatura se desglosará en dos partes: una primera parte en la que se impartirán conocimientos en Biología Molecular y Biotecnología Vegetal, y una segunda parte en la que los estudiantes aprenderán herramientas de Biología celular y Biología Molecular. Los conocimientos se impartirán mediante clases teóricas y la resolución de problemas.

En relación a la primera parte de la asignatura, los estudiantes aprenderán los siguientes conceptos y conocimientos:

- -Estructura de un gen vegetal. De la transcripción a la proteína funcional.
- -Transformación de las plantas: vía Agrobacterium, vía bio-balística, vía mutaciones químicas y otros.
- -Generación de plantas transgénicas por sobreexpresión de un gen de interés o represión con la técnica de RNAi.
- -Cultivo in vitro vegetal.
- -Edición de genes mediante la técnica de CRISPR-Cas.
- -Plantas mutantes: qué son, para qué sirven, cómo se producen, importancia de las colecciones existentes.
- -Arabidopsis thaliana como organismo modelo y comparación con otros modelos.
- -Uso de plataformas bioinformáticas para los estudios de biología molecular.
- -Técnicas masivas de estudio de la regulación de la expresión génica.

En relación con la segunda parte de la asignatura.

- -Herramientas de biología celular y biología molecular de plantas.
- -Generación de plantas transgénicas (de la clonación a la selección).
- -Técnicas para la detección de la interacción proteína-proteína.
- -Impacto social y económico de los cultivos transgénicos.

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clases magistrales	28	1,12	CM32, CM33, KM36, SM33, CM32
Prácticas de laboratorio	12	0,48	KM36, SM33, KM36
Seminarios	12	0,48	CM32, CM33, KM36, CM32
Tipo: Supervisadas			
Evaluaciones (seminarios y teoría)	7	0,28	CM32, CM33, KM36, SM33, CM32

Tutorías	5	0,2	KM36, KM36, SM33
Tipo: Autónomas			
Estudio personal	61	2,44	CM32, CM33, KM36, SM33, CM32
Preparación de la memoria de prácticas	5	0,2	KM36, KM36, SM33
Preparación de seminarios	5	0,2	CM32, CM33, KM36, CM32
Preparación del caso práctico	8	0,32	KM36, KM36, SM33

Las actividades formativas constarán de clases de teoría, seminarios y clases de prácticas de laboratorio.

Clases de teoría

Los profesores explicarán el contenido del temario con el soporte de material accesible en internet. Estas sesiones expositivas constituirán la parte principal de la asignatura. Los conocimientos de algunas partes del temario tendrán que ser objeto de profundización por parte de los estudiantes, mediante aprendizaje autónomo. Para facilitar esta tarea se proporcionará información sobre localizaciones en libros de texto, páginas web, artículos científicos relacionados con el tema...

Seminarios

Los seminarios serán impartidos por los propios alumnos, de forma individual o en grupo, dependiendo del número de alumnos matriculados y de la disponibilidad de tiempo.

Los alumnos tendrán que exponer en un período de 10 minutos la resolución de un caso práctico de la biología molecular de plantas y plantear unos objetivos encaminados a su resolución. Además, aparte del seminario y de la discusión en el turno de preguntas, los alumnos tendrán que entregar un póster.

Los seminarios serán objeto de evaluación, teniendo un impacto en la nota final.

Clases prácticas de laboratorio

Las clases prácticas de laboratorio constarán de 3 sesiones de 4 horas cada una. Los protocolos para la realización de las prácticas se pondrán a disposición del alumnado a principio de curso académico. Durante estas sesiones se profundizará a nivel experimental en algunos de los temas básicos de la biotecnología vegetal.

Las prácticas serán obligatorias y objeto de evaluación, teniendo un impacto en la nota final.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Entrega Caso práctico	25%	0	0	CM33, KM36, SM33

Presentación póster	10%	3	0,12	CM32, CM33, KM36, SM33
Primer parcial	15%	1	0,04	CM32, CM33, KM36, SM33
Prácticas de laboratorio	20%	0	0	KM36, SM33
Segundo parcial	30%	3	0,12	CM32, CM33, KM36, SM33

Se evaluarán por separado las prácticas de laboratorio, seminarios y adquisición de conocimientos correspondientes a la materia explicada y trabajada en las clases teóricas.

La asistencia a las clases prácticas de laboratorio es obligatoria. el hecho de no cumplir este requisito implicará que el alumno pierda el derecho a ser evaluado en las demás partes. El alumnado obtendrá la calificación de "No Evaluable" cuando la ausencia sea superior al 20% de las sesiones programadas. Una vez aprobadas las prácticas, no será necesario volver a realizarlas, aunque el alumno deba matricularse de esta asignatura en otro curso académico. Se evaluarán los siguientes conceptos: 1) la actitud y participación durante el desarrollo de las clases; 2) los resultados experimentales obtenidos; 3) la memoria. La memoria consistirá en una presentación de los resultados obtenidos personalmente y en la elaboración y discusión crítica de éstos.

La nota máxima posible correspondiente a las prácticas de laboratorio será de 2 puntos de 10 finales.

La nota de los seminarios (elaboración de un proyecto y exposición oral) es de 1 punto de 10 finales. El proyecto deberá exponerse brevemente de forma oral en presencia de toda la clase.

La adquisición de conocimientos correspondientes a la materia explicada en las clases magistrales se evaluará mediante:

La primera parte de la asignatura se evaluará a mitad del período docente con una prueba escrita (Primer parcial) que se calificará con una nota de 1.5 puntos y una entrega de un caso práctico que se calificará con una nota de 2.5 puntos de los 10 finales.

La segunda parte de la asignatura se evaluará con una prueba escrita al final del período docente, que se calificará con una nota máxima de 3 puntos de los 10 finales.

La nota final de la asignatura se obtendrá sumando las notas obtenidas en las distintas partes (prácticas, seminarios, teoría, caso práctico). La superación de la asignatura implicará la obtención de un mínimo de 5 puntos totales. Además, para superar la asignatura, la suma de la nota de ambos exámenes de teoría no podrá ser inferior a 5 puntos (sobre 10). En caso contrario, la asignatura será suspendida, aunque la suma de las diferentes notas dé una puntuación de 5,0 o superior.

Para participar en la recuperación, el alumnado debe haber sido previamente evaluado en un conjunto de actividades, cuyo peso equivalga a un mínimo de dos terceras partes de la calificación total de la asignatura. Por tanto, el alumnado obtendrá la calificación de "No Evaluable" cuando las actividades de evaluación realizadas tengan una ponderación inferior al 67% en la calificación final.

Los alumnos también podrán presentarse en el examen de recuperación para subir la nota de la parte teórica, aunque tengan aprobada la asignatura. En ese caso renuncian a la nota de teoría anterior.

Evaluación única

El alumnado que se acoja a la evaluación única debe realizar las prácticas de laboratorio (PLAB) en sesiones presenciales.

La evaluación única consiste en una prueba de síntesis única (con preguntas de tipo test y un/s tema/s a desarrollar). La nota obtenida en la prueba de síntesis (que incorpora la primera y la segunda parte de la teoría) es el 70% de la nota final de la asignatura. El informe de prácticas será del 20%. La presentación del

póster (creación del póster y grabación de su defensa) será del 10% restante. El informe de prácticas, el póster y su grabación podrán ser entregados a las fechas fijadas en la evaluación continuada o ser entregados coincidiendo con la fecha de la prueba de síntesis única.

La prueba de evaluación única se realizará coincidiendo con la misma fecha fijada en calendario para la última prueba de evaluación continua.

La nota mínima de la prueba de síntesis será de 5 puntos (70% de la nota). Para aprobar la asignatura es necesario obtener una nota final mínima de 5 puntos sobre 10.

Bibliografía

- 1. Biochemistry and Molecular Biology of Plants (Buchanan, Gruissem and Jones) ASPP.
- 2. Biology of Plants (Raven, Evert, and Eichhorn) Worth publishers, Inc.
- 3. Plant Physiology (Salisbury and Ross) Wadsworth Publishing Company
- 4. Plants, Genes, and Agriculture (Chrispeels and Sadava). Jones and Bartlett Publishers
- 5. Fundamentos de Fisiología Vegetal. Joaquín Azcón-Bieto y Manuel Talón (2000). McGraw-Hill Interamericana y Edicions de la Universitat de Barcelona.
- 6. Huellas de DNA en genomas de plantas (Teoría y protocolos de laboratorio). Ernestina Valadez Moctezuma y Günter Kahl (2000). Mundi-Prensa México.
- 7. Biotecnología Vegetal. Manuel Serrano García y M. Teresa Piñol Serra (1991). Colección Ciencias de la Vida. Editorial Síntesis. Madrid.
- ARTÍCULOS Y REVISIONES DE DIFERENTES REVISTAS CIENTÍCAS DEL CAMPO.
 PRÁCTICAMENTE LA TOTALIDAD DE ESTE TIPO DE BIBLIOGRAFÍA ES EN INGLÉS.

Toda la información de teoría necesaria podrá ser encontrada online a través de las plataformas que la Universidad pone a disposición del alumnado.

Software

Los sitios webs de interés se proporcionarán durante el curso.

Lista de idiomas

		l.			
Nombre		Grupo	Idioma	Semestre	Turno
(PLAB) Prácticas	de laboratorio	442	Catalán/Español	primer cuatrimestre	tarde
(PLAB) Prácticas	de laboratorio	443	Catalán/Español	primer cuatrimestre	tarde
(PLAB) Prácticas	de laboratorio	444	Catalán/Español	primer cuatrimestre	tarde
(SEM) Seminario	os	441	Catalán	primer cuatrimestre	manaña-mixto
(TE) Teoría		44	Catalán	primer cuatrimestre	manaña-mixto