

Ingeniería Genética de Microorganismos

Código: 100972 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
2500253 Biotecnología	ОТ	4

Contacto

Nombre: Susana Campoy Sanchez

Correo electrónico: susana.campoy@uab.cat

Equipo docente

Maria Perez Varela Susana Campoy Sanchez Jesus Aranda Rodriguez

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Prerrequisitos

Es recomendable haber cursado o estar cursando las asignaturas Microbiologia, Biologia y Genética Molecular, Microbiología Molecular y Virologia.

Objetivos y contextualización

El objetivo principal de esta asignatura es que el estudiante sea capaz de diseñar procedimientos para la manipulación genética de microorganismos.

Por eso durante el desarrollo de la asignatura, el estudiante deberá alcanzar las capacidades siguientes:

- Saber identificar los diferentes tipos de vectores microbianos, de reconocer sus aplicaciones y de diseñar otros nuevos
- · Saber aplicar metodologías y estrategias de clonación
- Reconocer la implicación de las características propias de cada microorganismo (sistemas inmunidad, capacidad recombinación, uso de codón, etc) en el diseño experimental propuesto
- Saber escoger la técnica de transferencia genética más adecuada en cada caso propuesto
- Poder diseñar estrategias eficientes para la obtención, enriquecimiento y selección de mutantes
- Saber construir fusiones génicas y reconocer sus posibles aplicaciones
- Reconocer las características principales de las posibles dianas bacterianas para el desarrollo de fármacos, vacunas y reactivos de diagnóstico

Resultados de aprendizaje

- 1. CM31 (Competencia) Trabajar en equipo y de forma colaborativa para la resolución de problemas y casos prácticos en el ámbito de la biología aplicada.
- 2. KM31 (Conocimiento) Explicar las posibilidades de manipulación de microrganismos.
- 3. KM32 (Conocimiento) Describir las principales técnicas asociadas a la manipulación genética de microorganismos.
- 4. SM31 (Habilidad) Utilizar las técnicas de análisis de la variabilidad genética en especies domésticas.

Contenido

En esta asignatura se tratan los siguientes temas:

Unidad 1. Sistemas de introducción de DNA en bacterias. Transformación natural en bacterias gramnegativas y grampositivas. Estado de competencia. Mecanismos moleculares asociados a la transformación natural. Transformación inducida. Electrotransformación. Diseño y optimización de sistemas de transformación en bacterias carentes de transformación natural. Otros sistemas de transferencia de DNA.

Unidad 2. Vectores de DNA y estrategias de clonación en bacterias. Requerimientos de los vectores de clonación. Vectores de expresión. Vectores tipo T. Vectores movilizables. Vectores suicidas. Vectores shuttle. Vectores integracionales. Características genéticas de las células receptoras de vectores. Construcción de genotecas de DNA *in vitro* e *in vivo*. Clonación por complementación: genes anabólicos o catabólicos. Métodos de aislamiento de genes reguladores. Obtención de genes de virulencia. Clonación de genes tóxicos.

Unidad 3. Fusiones génicas en bacterias. Fusiones transcripcionales y traduccionales. Fusiones en unidades policistrónicas. Vectores de fusión: características generales. Fusiones al azar. Métodos de construcción de fusiones. Construcciones de fusiones mediante PCR, OE-PCR y Gibson *assembly*. Aplicaciones y ejemplos de fusiones génicas.

Unidad 4. Mutagénesis en bacterias. Mutagénesis al azar *in vivo*. Uso de métodos químicos o físicos. Criterios y métodos para la selección y enriquecimiento de mutantes. Transposones. Minitransposons. Plasposons. Transposomas. Métodos para la identificación y confirmación de mutantes. Mutagénesis *in vitro* de genes clonados.

Unidad 5. Sustitución de genes en bacterias y generación de *knockouts*. Obtención de mutantes por disrupción génica y por sustitución génica. Sistema Lambda Red. Obtención de mutantes *scarless*. Sistemas de contraselección. Sistema I-Scel. Uso de la tecnología CRISPR/Cas9 para la obtención de mutantes. Métodos para la identificación y confirmación de mutantes. Sistemas de reintroducción de genes alterados en la bacteria de origen. Inserción en el cromosoma de nuevos genes o construcciones.

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clases magistrales participativas	30	1,2	
Seminarios	12	0,48	

Tipo: Supervisadas

Tutorías	1	0,04
Tipo: Autónomas		
Estudio y otras actividades de autoaprendizaje	50	2
Lectura de textos recomendados	20	0,8
Preparación de pósters y cuestionarios	34	1,36

La asignatura consta de dos módulos:

Módulo de seminarios: en las que mediante aprendizaje colaborativo, se trabajan diferentes aspectos de diseños experimentales reales presentes en artículos científicos actuales. Al inicio del curso el alumnado, siguiendo las pautas marcadas por el profesorado, escoge un artículo científico relacionado con el ámbito de la ingeniería genética de microorganismos del que elaboran un póster. El calendario de actividades donde se definirán las sesiones de trabajo de aula, de exposición y debate del trabajo realizado así como las fechas de entrega de las actividades propuestas se entrega al inicio del curso por el profesorado.

Módulo teórico: donde se combinan clases magistrales participativas con sesiones de aprendizaje basado en problemas donde se trabajan los conceptos teóricos a través de la resolución de casos prácticos.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Debate y participaci?n en el aula	5%	0	0	KM31, KM32, SM31
Entregas en el aula y el aula virtual	10%	0	0	CM31
Prueba escrita (resolución de casos prácticos)	50%	3	0,12	KM31, KM32, SM31
Póster	25%	0	0	CM31, KM31, KM32, SM31
Resolución de cuestionarios	7.5%	0	0	KM31, KM32, SM31
auto-evaluación individual o de grupo	2.5%	0	0	CM31

Evaluación del módulo de seminarios

La evaluación de los seminarios se realiza mediante la evaluación de diferentes actividades relacionadas con un artículo científico, se valora:

a) Las entregas autónomas que se entregarán a través del aula moodle y las entregas en las sesiones de trabajo en el aula. Con una calificación máxima de 2 puntos sobre 10.

- b) El póster y el cuestionario asociados al artículo científico elegido. Con una calificación máxima de 5 puntos sobre 10.
- c) La defensa del póster durante la exposición en el aula. Con una calificación máxima de 1 punto sobre 10.
- d) La resolución de los cuestionarios relativos a los seminarios expuestos. Con una calificación máxima de 1,5 puntos sobre 10.
- e) La autoevaluación individual y del grupo de trabajo. Con una calificación máxima de 0.5 puntos sobre 10.

Para superar este módulo de evaluación del estudiante debe obtener una nota igual o superior a 5.

Evaluación del módulo teórico

La evaluación de esta actividad se realiza mediante una prueba individual escrita. La calificación máxima de este apartado es de 10 puntos sobre 10.

Para superar este módulo es necesario obtener una puntuación igual o superior a 5 puntos.

Si la nota obtenida en el módulo teórico es inferior a 5, se podrá realizar una prueba de recuperación.

Para participar en la recuperación el alumno debe haber sido previamente evaluado en un conjunto de actividades el peso de las cuales equivalga a unmínimo de dos terceras partes de la cualificación total de la asignatura.

El alumnado que ha superado el módulo puede presentarse a una pruebade mejora de nota que se realiza en la fecha programada para la prueba de recuperación. La presentación a esta prueba implica la renuncia a la calificación obtenida previamente en este módulo. Para superar esta prueba es necesaria una puntuación igual o superior a 5. Los alumnos que deseen realizar la prueba de mejora de nota deben comunicarlo por escrito al profesorado como mínimo 72 h antes del día programado para la evaluación de recuperación.

La calificación final de la asignatura será el promedio de las calificaciones obtenidas en los dos módulos, siendo necesario haber superado, por separado, cada uno de ellos.

El alumno obtendrá la calificación de "No Evaluable" cuando las actividades de evaluación realizadas tengan una ponderación inferior al 67% en la calificación final.

Evaluación única

La evaluación del módulo teórico consiste en una única prueba que será la misma que la de la tipología de evaluación continuada, supondrá el 50% de la nota final de la asignatura y se aplicará el mismo sistema de recuperación que para la evaluación continuada.

La evaluación de las actividades del módulo de seminarios supondrá el 50% de la nota final de la asignatura. El alumnado que se acoja a la evaluación única podrá entregar todas las evidencias juntas (incluyendo la exposición oral) el mismo día que el fijado para la prueba del módulo teórico. La prueba de evaluación única se realizará coincidiendo con la misma fecha fijada en calendario para la última prueba de evaluación continuada.

Bibliografía

Como bibliografía de referencia de conceptos básicos se recomienda:

Larry Snyder y Wendy Champness. Molecular Genetics of Bacteria (3rd oro 4th Edition). ASM press (ISBN: 978-1-55581-399-4 and ISBN: 978-1-55581-627-8).

Versión digital disponible en el repositorio de la biblioteca de la UAB:

http://resolver.ebscohost.com.are.uab.cat/openurl?sid=EBSCO:nlebk&genre=book&issn=&ISBN=978155581627

Jeremy W. Dale y Simon F. Park. Molecular Genetics of Bacteria, (5th Edition) Wiley- Blackwell (ISBN: 978-0-470-74184-9)

Otros textos recomendados así como enlaces de interés se encontrarán disponibles en el aula Moodle de la asignatura.

Software

No aplicable.

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(SEM) Seminarios	441	Catalán/Español	segundo cuatrimestre	manaña-mixto
(SEM) Seminarios	442	Español	segundo cuatrimestre	manaña-mixto
(TE) Teoría	44	Español	segundo cuatrimestre	manaña-mixto

