

Biología Molecular de Procariotas

Código: 100985 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
2500502 Microbiología	ОВ	3

Contacto

Nombre: Jordi Barbé García

Correo electrónico: jordi.barbe@uab.cat

Equipo docente

Susana Campoy Sanchez

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Prerrequisitos

- Se aconseja a los/las estudiantes revisar el contenido científico-técnico en los que se fundamenta esta asignatura
- Es aconsejable cursar esta asignatura una vez se hayan cursado todas las asignaturas programadas en el primer y segundo curso del Grado de Microbiología, especialmente las asignaturas de Microbiología, Genética, Biología Molecular de Eucariotas y Virología, ya que es esencial haber alcanzado las competencias de todas ellas para alcanzar las asociadas a la asignatura de Biología Molecular de Procariotas.

Objetivos y contextualización

Se trata de una asignatura obligatoria del Grado de Microbiología, que introduce a los estudiantes en el conocimiento de la Biología Molecular de Procariotas. Esta asignatura es fundamental en la formación del alumno ya que le capacita para entender el funcionamiento de los organismos procariotas a nivel molecular, permitiéndole comprender el potencial de los microorganismos a nivel productivo así como sus aplicaciones.

Los objetivos concretos a alcanzar en esta asignatura se definen en los siguientes puntos:

- Identificar a nivel molecular los mecanismos y procesos microbiológicos.
- Reconocer la estructura del material genético procariota, distinguir sus mecanismos de replicación y reparación así como la variabilidad organizativa que presentan y la relación existente entre estos mecanismos y el ciclo celular.
- Reconocer los factores que controlan la expresión génica en procariotas y relacionarlos con las condiciones ambientales existentes.

- Identificar los mecanismos moleculares existentes en organismos procariotas para controlar la entrada de material exógeno.
- Distinguir los diferentes elementos genéticos existentes en procariotas, su capacidad de distribución y los sistemas de control de expresión de los genes que incluyen.
- Identificar las bases moleculares de la resistencia a antibióticos, sus orígenes, los mecanismos de transmisión así como el impacto que tienen en procesos infecciosos.

Resultados de aprendizaje

- CM11 (Competencia) Plantear estrategias de clonación molecular, generación de mutantes y mejora genética o de análisis ómicos con responsabilidad ética y perspectiva de género para dar respuestas innovadoras a las necesidades y demandas de la sociedad.
- 2. CM12 (Competencia) Integrar conocimientos y habilidades de la biología molecular y la genómica para elaborar y presentar un trabajo académico en el ámbito de la microbiología, ya sea en lengua inglesa como en la lengua propia u otras y trabajando individualmente y en grupo.
- 3. KM17 (Conocimiento) Describir los mecanismos moleculares responsables de la replicación, conservación y trasferencia del material genético, la expresión génica y de su regulación.
- 4. SM15 (Habilidad) Utilizar bibliografía y bases de datos relacionadas con la biología molecular y la genómica, tanto en lengua inglesa como en la lengua propia u otras.
- 5. SM16 (Habilidad) Relacionar los factores que controlan los diferentes niveles de la expresión génica con la adaptación a las condiciones ambientales existentes y su aplicación en la biotecnología.
- 6. SM18 (Habilidad) Relacionar los procesos de transferencia y conservación de la información genética con sus diversas aplicaciones en la ingeniería genética.

Contenido

La assignatura se organitzará en dos partes diferenciadas:

- Clases teóricas participativas
- Resolución de casos prácticos, en los que se aplicaran los conceptos teóricos para la solución de problemas i casos reales asociados con la materia de la asignatura.

El contenido de la asignatura consta de los siguientes temas:

Tema 1. El coromosoma bacteriano. Estructura del cromosoma bacteriano. Inicio de la replicación. Replicación, terminación y segregación del cromosoma bacteriano. División celular. El ciclo celular bacteriano.

Tema 2. Expresión génica en procariotas I. Estructura de los promotores bacterianos. RNAs monocistrónicos y policistrónicos. Inicio y elongación del transcrito bacteriano. Terminadores de la transcripción bacteriana. Degradación del mRNA. Transcripción en arqueas. Regulación transcripcional por atenuación de la transcripción.

Tema 3. Expresión génica en procariotas II. Moduladores globales de la expresión génica. Redes multigénicas. Respuesta estringente. Represión por catabolito. Regulación transcripcional positiva y negativa. Reguladores transcripcionales. Operones bacterianos. Regulaciones postranscripcionales. Regulones. RNAs reguladores.

Tema 4. Mutagénesis y sistemas de reparación del DNA en bacterias. Mutaciones letales condicionales. Mutaciones supresoras. Reparación de aparejamientos erróneos. Fotoreactivación. Reparación por escisión. Respuesta adaptativa a los agentes alquilantes. Reparación por escisión. Respuesta de reparación de emergencia o sistema SOS.

Tema 5. Restricción bacteriana. Sistemas de restricción y modificación del DNA. Tipos de enzimas de restricción. Regulación *in vivo* de la restricción-modificación. Sistema Mcr/Mrr. Sistema CRISPRs y otros mecanismos de inmunidad en bacterias.

Tema 6. El sistema célula bacteriana-bacteriófago. Bacteriófagos atenuados y líticos. Los bacteriófagos Lambda y P22 como modelos de bacteriófagos atenuados. Transducción. Conversión fágica.

Tema 7. Elementos genéticos móviles en bacterias. Secuencias de inserción. Transposones. Mecanismos de transposición y su regulación. Mutagénesis con transposones. Islas de patogenicidad móviles. Integrones. Otros elementos móviles.

Tema 8. Plasmidos y conjugación. Estructura molecular y propiedad de los plásmidos. Mecanismos de mantenimiento. Agregación y cointegración de plasmidos. Replicación. Grupos de incompatibilidad. Conjugación plasmídica en células gramnegativas y grampositivas. Movilización del cromosoma bacteriano. Otros elementos conjugativos (ICEs). Importancia de los elementos conjugativos en la evolución del mundo microbiano.

Tema 9. Mecanismos de resistencia a antimicrobianos. Resistencia plasmídica. Resistencia cromosómica. Mecanismos de inactivación de antimicrobianos. Síntesis de enzimas alternativos. Resistencias por rutas metabólicas alternativas. Impermeabilización de las células a los antimicrobianos. Bombas de eflujo. Modificaciones de estructuras celulares por enzimas plasmídicos. Mecanismos de distribución de resistencias plasmídicas.

Tema 10. Biologia molecular de la infección bacteriana. Aspectos moleculares de la interacción huésped-patógeno. Concepto y tipos de factores de virulencia bacteriana. Regulación de la expresión de genes de virulencia. Métodos de estudio de los genes de virulencia.

Actividades formativas y Metodología

Horas	ECTS	Resultados de aprendizaje
30	1,2	CM11, CM12, KM17, SM16, SM18, CM11
15	0,6	CM11, CM12, KM17, SM15, SM16, SM18, CM11
1	0,04	CM11, CM12, KM17, SM15, SM16, SM18, CM11
60	2,4	CM12, KM17, SM15, SM16, SM18, CM12
8	0,32	CM12, SM15, SM16, SM18, CM12
30	1,2	CM11, CM12, KM17, SM15, SM16, SM18, CM11
	30 15 1 60 8	30 1,2 15 0,6 1 0,04 60 2,4 8 0,32

La asignatura de Biología Molecular de Procariotas consta de dos módulos de actividades presenciales:

Módulo teórico: compuesto por clases magistrales participativas.

Módulo casos prácticos: compuesto por sesiones en las que se resolverán casos prácticos y problemas, y puntualmente algunos aspectos metodológicos asociados a la materia de Biología Molecular de Procariotas.

Estas clases son sesiones con un número reducido de alumnos con la doble misión de:

- a) Facilitar la comprensión de los conocimientos expuestos en las clases teóricas. La resolución de casos prácticos debe permitir al alumno integrar los conocimientos teóricos con aspectos prácticos.
- b) Capacitar al estudiante para diseñar experimentos básicos asociados con la materia de la asignatura y saber interpretar los datos obtenidos.

Al inicio del curso el/la estudiante recibirá un dossier con una propuesta de problemas que deberá ir desarrollando durante el curso. En las sesiones de este módulo se tratan aspectos metodológicos y se resuelven parte de los problemas del dossier.

Con el objetivo de que los conceptos a utilizar en las sesiones de resolución de casos prácticos estén siempre coordinados con los contenidos ya desarrolladas en las clases de teoría, en determinados momentos del curso se podrán llevar a cabo reordenaciones y / o permutas entre las clases de teoría y de problemas. estas reordenaciones en ningún caso comportarán la reducción del número global de actividades docentes presenciales de la asignatura.

Las actividades autónomas de esta asignatura son: estudio, lectura de textos y resolución de problemas.

Finalmente, el/la estudiante dispone también de tutorías individuales, las que se realizarán en el despacho C3-421 o el C3-323 en horas previamente concertadas con el equipo docente.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Resolución de un caso	10% de la calificación total de la asignatura	2	0,08	CM11, CM12, KM17, SM15, SM16, SM18
Two in-person written evaluation tests	Cada una de las dos pruebas escritas valdrá un 45 % de la nota final	4	0,16	CM11, KM17, SM16, SM18

EVALUACIÓN CONTINUADA:

La evaluación de la asignatura, que será individual y continuada, consta de tres actividades de dos tipologías diferentes sin que ninguna de estas actividades supere el 50% de la calificación definitiva:

 i) Dos pruebas escritas en las que el alumno/a debe demostrar su grado de consecución de los conceptos teóricos a través de la resolución de problemas ii) La entrega de la resolución de un caso practico concreto para la que deberá aplicar de forma global los conocimientos desarrollados en los diferentes temas de la asignatura interconectándolos entre si.

Si un/a estudiante, sin aportar la documentación justificativa pertinente, llega transcurridos 30 minutos desde el inicio de cualquiera de las dos pruebas escritas, tendrá, para ésta, la calificación de no evaluable.

La puntuación final será el promedio de las notas obtenidas en las dos pruebas parciales (cada una de ellas con un peso relativo del 45% de la nota final) al que se sumará la calificación del caso práctico (10 % de la nota final) que se deberá entregar, como máximo, una semana antes del examen de recuperación de la asignatura. Para aprobar la asignatura será necesario obtener, como mínimo, una puntuación final de 5.

La primera prueba tendrá lugar a mediados del semestre e incluirá todos los conceptos trabajados hasta el momento en las sesiones teóricas y en las de resolución de casos prácticos. La segunda se llevará a cabo al final del semestre e incluirá todos los conceptos abordados en las clases de teoría y de resolución de problemas que no hayan sido objeto de evaluación en la primera prueba. Para que se pueda realizar el promedio de las calificaciones obtenidas en ambas pruebas parciales ninguna de ellas podrá ser inferior a 4.

Los/las estudiantes que no hayan superado el valor de 4 en alguna de las pruebas parciales o en ninguna de ellas, deberán examinarse del parcial o parciales pendientes el día del examen de recuperación. En caso de que sólo se haga la recuperación de un parcial, la calificación obtenida en éste hará promedio (siempre que sea igual o superior a 4) con la que se hubiera tenido en el parcial superado al que se sumará la puntuación obtenida en el caso práctico entregado. Si la recuperación se hace para los dos parciales, la calificación definitiva será la que se obtenga en este examen final más la nota obtenida en el caso práctico entregado.

Los/las estudiantes que hayan superado los dos exámenes parciales podrán presentarse a una prueba de mejora de nota que se realizará en la fecha programada para la prueba de recuperación. La presentación a la prueba de mejora de nota podrá ser por la materia correspondiente a un único parcial o en ambos e implica la renuncia a la calificación obtenida previamente para este parcial, ó en su caso, para los dos parciales.

Sila mejora es para los dos parciales, la nota final de la asignatura será la que consiga en esta prueba más la puntuación lograda en el caso práctico entregado. Si la mejora es para un único parcial, la calificación final de la asignatura será la media de la obtenida en esta prueba de mejora (siempre que sea igual o superior a 4) con la que se haya obtenido en el examen parcial que no ha sido objeto de reevaluación más la calificación lograda en el caso entregado.

Los estudiantes que deseen realizar la prueba de mejora de nota ya sea por uno o por los dos parciales deberán comunicarlo al profesor responsable de la asignatura por escrito al menos 72 horas antes del día programado para la evaluación de recuperación indicando explícitamente la renuncia a la calificación obtenida en el examen anterior para el que se quiere mejorar la nota

Debido a las limitaciones existentes para la concesión de matrículas de honor, se podrán programar pruebas específicas para este fin. Aquel estudiante que no haya participado en un 50% de las actividades de evaluación será considerado NO EVALUABLE.

EVALUACIÓN ÚNICA:

La evaluación única consiste en una única prueba en la que se evaluarán los contenidos de todo el programa de teoría de la asignatura y en la que también se evaluará la capacidad de resolución de problemas. La nota obtenida en esta prueba de síntesis supondrá el 100% de la nota final de la asignatura. La prueba se programará el mismo día que la prueba del 2ºparcial de la evaluación continuada. Para superarla, la calificación deberá ser igual o superior a 5. En caso contrario, será necesario presentarse a la evaluación de recuperación, que será una prueba equivalente a la primera, en la que el/la estudiante debe obtener una calificación igual o superior a 5 para poder superar la asignatura.

Bibliografía

Larry Snyder and Wendy Champness. Molecular Genetics of Bacteria (5th Edition). ASM press (ISBN: 978-1555819750)

Larry Snyder and Wendy Champness. Molecular Genetics of Bacteria (4th Edition). ASM press (ISBN:978-1555816278)

Disponible on line (https://bibcercador.uab.cat/permalink/34CSUC_UAB/1eqfv2p/alma991010432874206709)

Jeremy W. Dale and Simon F. Park. Molecular Genetics of Bacteria (5th Edition). Wiley- Blackwell (ISBN: 978-0-470-74184-9)

Toda la información asociada a la asignatura así como el link al aplicativo on line está disponible para el estudiante a través del Campus Virtual.

Software

No procedeix

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(PAUL) Prácticas de aula	731	Catalán	primer cuatrimestre	manaña-mixto
(PAUL) Prácticas de aula	732	Catalán	primer cuatrimestre	manaña-mixto
(TE) Teoría	73	Catalán	primer cuatrimestre	manaña-mixto