

Química Cuántica

Código: 102503 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
2502444 Química	ОВ	2

Contacto

Nombre: Ricard Gelabert Peiri

Correo electrónico: ricard.gelabert@uab.cat

Equipo docente

Ricard Gelabert Peiri Miquel Moreno Ferrer

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Prerrequisitos

Es necesario tener aprobada la asignatura "Fonaments de Química" (Fundamentos de Química) de primer curso. Se recomienda tener también aprobadas las asignaturas "Matemàtiques" (Matemáticas) y "Física" (Física) de primer curso. Aquellos alumnos o alumnas que no las hayan aprobado y cursen "Química Quàntica" (Química Cuántica) van a toparse con dificultades especiales para superarla.

Objetivos y contextualización

La química estudia la materia, sus propiedades, transformaciones y su interacción con la radiación electromagnética. Dado que los elementos básicos que constituyen la materia (electrones y núcleos atómicos) no obedecen las leyes de la física clásica sino la poco intuitiva mecánica cuántica, resulta indispensable aplicar de forma rigurosa sus principios para derivar las leyes que gobiernan la materia, su estructura, los tipos de enlace y sus transformaciones, y ver cómo tienen importantes consecuencias a nivel macroscópico. Este es el objetivo de la química cuántica como disciplina dentro de una concepción moderna de la química.

Como asignatura, su primer objetivo es que el alumnado adquiera el hábito de pensar la química usando conceptos mecanocuánticos de forma correcta y puedan extraer consecuencias. Un segundo objetivo es que interioricen una explicación rigurosa de los principios básicos de la química, los cuales quizá de forma mecánica han estado usando en los cursos introductorios de química (en particular aquellos que tienen que ver con el enlace). En tercer lugar, el alumnado debe desarrollar habilidades para el uso de herramientas matemáticas para resolver problemas relacionados con la estructura atómica y molecular. En relación a esto

último, un objetivo importante es el familiarizar al alumnado con el uso de herramientas informáticas de química cuántica para que ello sea incorporado como una herramienta más en el estudio de la materia y sus propiedades.

Competencias

- Adaptarse a nuevas situaciones.
- Aprender de forma autónoma.
- Comunicarse de forma oral y escrita en la lengua nativa.
- Demostrar iniciativa y espíritu emprendedor.
- Demostrar motivación por la calidad.
- Demostrar que comprende los conceptos, principios, teorías y hechos fundamentales de las diferentes áreas de la Química.
- Gestionar la organización y planificación de tareas.
- Gestionar, analizar y sintetizar información.
- Mantener un compromiso ético.
- Obtener información, incluyendo la utilización de medios telemáticos.
- Operar con un cierto grado de autonomía e integrarse en poco tiempo en el ambiente de trabajo.
- Poseer destreza para el cálculo numérico.
- Proponer ideas y soluciones creativas.
- Razonar de forma crítica.
- Reconocer y analizar problemas químicos y plantear respuestas o trabajos adecuados para su resolución, incluyendo en casos necesarios el uso de fuentes bibliográficas.
- Resolver problemas y tomar decisiones.
- Utilizar correctamente la lengua inglesa en el ámbito de la Química.
- Utilizar la informática para el tratamiento y presentación de información.

Resultados de aprendizaje

- 1. Adaptarse a nuevas situaciones.
- 2. Aprender de forma autónoma.
- 3. Comunicarse de forma oral y escrita en la lengua nativa.
- 4. Demostrar iniciativa y espíritu emprendedor.
- 5. Demostrar motivación por la calidad.
- 6. Describir los principios de la mecánica cuántica y reconocer su aplicación en la descripción de la estructura y las propiedades de átomos y moléculas.
- 7. Gestionar la organización y planificación de tareas.
- 8. Gestionar, analizar y sintetizar información.
- 9. Identificar y analizar problemas relacionados con la estructura de las moléculas.
- Mantener un compromiso ético.
- 11. Obtener información, incluyendo la utilización de medios telemáticos.
- 12. Operar con un cierto grado de autonomía e integrarse en poco tiempo en el ambiente de trabajo.
- 13. Poseer destreza para el cálculo numérico.
- 14. Proponer ideas y soluciones creativas.
- 15. Razonar de forma crítica.
- 16. Resolver problemas y tomar decisiones.
- 17. Resumir un texto científico relacionado con la asignatura en lengua inglesa.
- 18. Utilizar la informática para el tratamiento y presentación de información.

Contenido

Clases Teóricas

- Parte 1: Fundamentos de Mecánica Cuántica. Introducción histórica. Fundamentos matemáticos.
 Postulados de la mecánica cuántica. Principio de indeterminación de Heisenberg. Sistemas modelo: partícula en una caja, oscilador armónico.
- Parte 2: Estructura Atómica. Momento angular. Átomo de hidrógeno. Spin. Átomos polielectrónicos.
 Principio de antisimetría. Determinantes de Slater. Principio de Exclusión. Métodos aproximados: método variacional. Principio de Aufbau. Tabla periódica.
- Parte 3: Estructura Molecular. El hamiltoniano molecular. Aproximación Born-Oppenheimer. Molécula H
 2⁺. Aproximación OM-CLOA. Molécula de H₂. Estudios cualitativos: moléculas diatómicas y poliatómicas.
- Parte 4: Química Teórica y Computacional. Determinación de la Estructura Electrónica. Método de Hartree-Fock. Conjuntos de base. Correlación electrónica. Método de interacción de configuraciones. Métodos del funcional de la densidad.
- Parte 5: Química Teórica y Computacional. Superficies de Energía Potencial. Hipersuperficies de energía potencial. Puntos estacionarios: mínimos y puntos de ensilladura. Significado de los puntos estacionarios. Localización de puntos estacionarios. Aplicaciones: estructura molecular, termodinámica y dinámica de las reacciones químicas, espectroscopia.

Clases Prácticas

- Práctica 1. Sistemas Modelo: Partícula en una caja, oscilador armónico. Átomo Hidrogenoide: Orbitales.
- Práctica 2. Estructura Electrónica I: Método Hartree-Fock. Conjuntos de funciones de base.
- Práctica 3. Estructura Electrónica II: Optimización de geometrías moleculares. Reactividad Química I: Termodinámica química.
- Práctica 4. Reactividad Química II: Cinética de reacciones.

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clases de Problemas	10	0,4	1, 2, 4, 8, 11, 14, 15, 16, 13
Clases de Prácticas	20	0,8	1, 2, 3, 7, 8, 10, 11, 12, 15, 16, 17, 13, 18
Clases de Teoría	32	1,28	1, 2, 5, 8, 10, 11, 15
Seminarios	2	0,08	3, 8, 15, 18
Tipo: Supervisadas			
Caso Práctico	8	0,32	3, 4, 5, 7, 8, 10, 11, 14, 15, 16, 17, 13, 18
Tipo: Autónomas			
Estudio Personal	44	1,76	7, 11, 16

La metodología docente se basa en cuatro tipos de actividades: clases de teoría, clases de problemas, seminarios y sesiones prácticas.

- Clases de Teoría. Se trata de una asignatura de alto contenido teórico. La teoría de la asignatura se desarrollará por parte del profesorado en el aula, usando materiales de soporte allí donde sea preciso. Este material estará a disposición del alumnado por adelantado mediante la plataforma Campus Virtual. Adicionalmente se dispone de cierto material audiovisual para visualizar de forma asíncrona, el cual podrá ser usado según considere oportuno el profesorado de forma complementaria o substitutiva a las clases presenciales.
- Clases de Problemas. La resolución de problemas es uno de los principales objetivos de la asignatura. Al inicio del curso se distribuirá en la plataforma Campus Virtual una colección completa de problemas para todo el curso, junto a un formulario y un solucionario. Conforme las clases de teoría se vayan desarrollando el profesorado indicará qué problemas son susceptibles de ser resueltos. En sesiones periódicas se procederá a resolver algunos de estos problemas de forma detallada y extensa en clase.
- Seminarios. Se programarán dos seminarios antes de los dos exámenes parciales. A criterio del profesorado o de los intereses mostrados por el alumnado se podrán utilizar estos seminarios para resolver dudas, profundizar en determinados aspectos del temario, o llevar a cabo sesiones de discusión de textos, citas o determinados resultados, de manera que se pueda conectar la discusión con los elementos constituyentes del temario.
- Sesiones de Prácticas. Todas las prácticas de la asignatura son prácticas de simulación que se llevan a cabo por ordenador. Cuatro prácticas están programadas. De éstas, la primera se llevará a cabo poco antes del primer examen parcial y el resto antes del segundo. En la primera práctica el alumnado utilizará programas desarrollados por el profesorado de la asignatura para simular determinados aspectos de los fundamentos de la mecánica cuántica en sistemas modelo así como una parte dedicada al átomo hidrogenoide. En las sesiones restantes el alumnado usará software con licencia para realizar cálculos mecanocuánticos de estructura electrónica en moléculas de tamaño pequeño y mediano. En esta última serie de prácticas se estudiará la estructura molecular, la reactividad a nivel termodinámico y la dinámica de reacción en algunas reacciones sencillas. Una parte de las prácticas incluirá el estudio de un caso individualizado de reacción.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Contenidos Prácticos	30%	21	0,84	1, 2, 3, 4, 5, 7, 8, 11, 12, 14, 15, 16, 17, 13, 18
Evidencias	10%	6	0,24	5, 6, 8, 9, 10, 15, 16, 13
Exámenes Escritos (Parciales y de Recuperación)	60%	7	0,28	3, 15, 16, 13

Evaluación Continua

La evaluación de la asignatura se realiza a partir de tres contribuciones: Contenidos Teóricos, Contenidos Prácticos y Evidencias. De estas tres, es requisito para aprobar la asignatura el haber obtenido una nota mínima de 4,0 sobre 10,0 tanto en los Contenidos Teóricos como en los Contenidos Prácticos, por separado. Quienes que no logren estas notas mínimas no podrán superar la asignatura.

- Contenidos Teóricos. El peso en la nota final de los Contenidos Teóricos es del 60%. La nota de estos contenidos refleja los conocimientos teóricos de la materia consolidados por el alumnado y su capacidad para aplicarlos en la resolución de problemas. A lo largo del curso se programarán tres exámenes escritos: dos de ellos parciales y uno de recuperación. Cada prueba parcial evaluará el temario cubierto durante la parte correspondiente del curso, mientras que en la prueba de recuperación cubrirá todo el temario. Para poder participar en la prueba de recuperación es necesario que como mínimo el alumno o alumna: se haya presentado a un examen parcial, haya realizado las prácticas y haya entregado como mínimo una evidencia. Quien supere los Contenidos Teóricos mediante exámenes parciales no es necesario que se presente a la prueba de recuperación. En caso contrario deberá presentarse a la misma. La nota final de Contenidos Teóricos será la media ponderada de los exámenes parciales (con un peso del 60% para el primer parcial y del 40% para el segundo parcial) si esta nota es como mínimo de 4,0 sobre 10,0. En caso contrario la nota será la del examen de recuperación. De forma extraordinaria quienes habiendo superado los Contenidos Teóricos mediante exámenes parciales deseen subir nota, deberán solicitarlo por E-Mail al profesorado con antelación, el cual confirmará la recepción del mismo. Sólo entonces podrán realizar el examen de recuperación, teniendo en cuenta que, si entregan su examen de recuperación al profesorado la nota del mismo sustituye incondicionalmente la de las dos pruebas parciales (es decir: pueden bajar nota).
- Contenidos Prácticos. Los Contenidos Prácticos contribuyen un 30% a la nota final de la asignatura. La asistencia a las sesiones de prácticas es obligatoria. La nota de Conenidos Prácticos consta de dos partes con un peso del 50% cada una: de una parte la nota obtenida de la corrección de los informes de laboratorio, y de otra la nota de un examen sobre las prácticas.
 - Durante la realización de cada práctica se publicará un modelo de informe mediante la plataforma Campus Virtual. Los informes se entregaránutilizando el canal y dentro del plazo que se harán públicos durante la práctica. La nota final de los informes de prácticas será una media ponderada de los informes, atendiendo a la diferente complejidad de cada práctica. A criterio del profesorado se podrá convocar a alumnos o alumnas concretos para una discusión de sus prácticas.
 - El día en que se realice el 2º examen parcial el alumnado recibirá también el enunciado de una prueba escrita de corta duración sobre las prácticas.

Para optar a aprobar la asignatura es necesario obtener un 4,0 sobre 10,0 en los Contenidos Prácticos, calculados a partir del 50% de la notade informesy el50% de la nota del exámen de prácticas. Esta nota no es recuperable.

- Evidencias. El peso de las Evidencias en la nota final es del 10%. A lo largo del cuadrimestre se propondrá la realización de evidencias relacionadas con el temario cubierto. Se tratará de ejercicios más elaborados que los resueltos en clase y podrán requerir del uso de conocimientos de temas ya estudiados en el temario. Los ejercicios se entregarán a título individual y en el plazo previsto. La nota final del apartado de evidencias será una media ponderada teniendo en cuenta la dificultad relativa de los ejercicios propuestos.
- Retos. Adicionalmente, a criterio del profesorado se podrán proponer un número reducido de ejercicios avanzados, de carácter voluntario. Estos ejercicios avanzados tienen por objeto estimular al alumnado que desee ampliar conocimientos y profundizar en la materia. Serán ejercicios de complejidad superior y podrán requerir el uso de conocimientos impartidos en el curso, conocimientos de otras materias, consulta de bibliografía especializada o incluso el uso de programas informáticos especializados para realizar simulaciones. El conjunto de ejercicios voluntarios representará un máximo de 1,0 punto sobre 10,0 en función del número total de retos propuestos , y su contribución será adicional a la de los otros ítems obligatorios: se hace notar que esto podría llevar la nota final por encima de 10,0, en cuyo caso la nota será reducida a este valor. En ningún caso la nota de la sección "Retos" eximirá de obtener una nota mínima de 4,0 sobre 10,0 tanto en los Contenidos Teóricos como en Contenidos Prácticos.

Evaluación Única

Se hace constar explícitamente que la realización de las prácticas, la entrega de los informes y la realización de la prueba escrita de prácticas son obligatorias, en igualdad de condiciones con el alumnado que sigue el itinerario de evaluación continua.

El alumnado que se haya acogido a la modalidad de evaluación única deberá realizar dos pruebas escritas el mismo día en que el alumnado que sigue evaluación continua hace el segundo parcial:

- La primera de las pruebas consiste en un examen de todo el temario de teoría y de problemas de la asignatura. La nota de este examen será su nota de Contenidos Teóricos.
- La segunda de las pruebas será un examen corto basado en el contenido de las prácticas. La nota de Contenidos Prácticos se calculará igual que para el alumnado en evaluación continua: 50% de la corrección de informes de laboratorio y 50% del examen de prácticas.

Para optara aprobar la asignatura es necesario obtener una nota de 4,0 sobre 10,0 tanto en los Contenidos de Teoría como en los Contenidos de Prácticas. Cuando este sea el caso la nota final de la asignatura se calculará según esta fórmula:

Nota Final = (70×Contenidos Teóricos + 30×Contenidos Prácticos)/100

Si la nota final obtenida según esta fórmula no llegara a 5,0 sobre 10,0 o bien la nota de Contenidos Teóricos no alcanzara el valor de 4,0 sobre 10,0 está disponible otra oportunidad para superar la asignatura mediante un examen de recuperación que se celebrará en la fecha que fije la Coordinación de Titulación. En esta prueba sólo se podrán recuperar el 70% de la nota correspondiente a los Contenidos Teóricos. La parte de Contenidos Prácticos no es recuperable: Quien no obtenga una nota de 4,0 sobre 10,0 en su calificación de Contenidos Prácticos no puede aprobar la asignatura.

Condición de "No Evaluable"

Serán considerados "No Evaluables" los alumnos y alumnas que no dispongan de una nota de Contenidos Teóricos o de Contenidos Prácticos. A este efecto, y en función del tipo de evaluación (continua o única) debe tenerse en cuenta lo siguiente:

- Los alumnos y alumnas en modalidad de Evaluación Contínua no tendrán nota de Contenidos Teóricos si únicamente han realizado un examen parcial y no han realizado el examen de recuperación, o bien no disponen de ninguna nota de exámenes. Los alumnos y alumnas en modalidad de Evaluación Única no tendrán nota de Contenidos Teóricos si no se han presentado a ninguna de las dos pruebas escritas que les corresponden.
- Independientemente de la modalidad de evaluación: los alumnos y alumnas no tendrán nota de Contenidos Prácticos si se da como mínimo uno de los supuestos siguientes: (1) no han realizado las prácticas, (2) no han entregado ningún informe de prácticas, (3) no han realizado la prueba escrita de prácticas.

Bibliografía

Bibliografía Básica

• J. Bertran, V. Branchadell, M. Moreno, M. Sodupe, *Química Cuántica*, Síntesis, 2000, ISBN: 978-8477387427 (versión electrónica en www.sintesis.com)

Bibliografía Complementaria

- I. N. Levine, Química Cuántica, 5ª Ed, Prentice Hall, 2001, ISBN: 978-8420530964.
- F. L. Pilar, Elementary Quantum Chemistry, 2nd Ed., Dover, 2003. ISBN: 978-04864114645.

• P. W. Atkins, R. Friedman, *Molecular Quantum Mechanics*, 5th Ed., Oxford, 2010. ISBN: 978-0199541423.

Software

La práctica 1 utiliza programas desarrollados por el profesorado de la asignatura, usando Python y librerías de código abierto. Se distribuirán imágenes ejecutables de estos programas para ejecutarlos bajo sistemas operativos Linux y/o Windows, de forma que no será necesario tener una instalación previa de Python ni de las librerías para ejecutarlos.

Las prácticas de estructura electrónica (2, 3 y 4) se realizarán con los programas GaussView y Gaussian 16, de Gaussian, Inc. Este *software* se utiliza bajo licencia y está instalado en los ordenadores del SIDCiB de la UAB, donde se ejecuta bajo Linux.

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(PAUL) Prácticas de aula	1	Catalán	primer cuatrimestre	manaña-mixto
(PAUL) Prácticas de aula	2	Catalán	primer cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	1	Catalán	primer cuatrimestre	tarde
(PLAB) Prácticas de laboratorio	2	Catalán	primer cuatrimestre	tarde
(PLAB) Prácticas de laboratorio	3	Catalán	primer cuatrimestre	tarde
(PLAB) Prácticas de laboratorio	4	Catalán	primer cuatrimestre	tarde
(PLAB) Prácticas de laboratorio	5	Catalán	primer cuatrimestre	tarde
(PLAB) Prácticas de laboratorio	6	Catalán	primer cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	7	Catalán	primer cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	8	Catalán	primer cuatrimestre	manaña-mixto
(SEM) Seminarios	1	Catalán	primer cuatrimestre	manaña-mixto
(SEM) Seminarios	2	Catalán	primer cuatrimestre	tarde
(TE) Teoría	1	Catalán	primer cuatrimestre	manaña-mixto
(TE) Teoría	2	Catalán	primer cuatrimestre	tarde