

Aplicaciones Multidisciplinares I

Código: 102729 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
2500895 Ingeniería Electrónica de Telecomunicación	ОТ	4

Contacto

Nombre: Núria Barniol Beumala

Correo electrónico: nuria.barniol@uab.cat

Equipo docente

Gabriel Abadal Berini Núria Barniol Beumala

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Prerrequisitos

Se recomienda haber alcanzado las competencias de las asignaturas de los cursos anteriores

Objetivos y contextualización

El objetivo genérico de la asignatura es aplicar la electrónica como tecnología de soporte en otros campos y actividades y no sólo en el ámbito de las Tecnologías de la Información y las Comunicaciones.

Se pretende que el alumno conozca y profundice en el diseño, la fabricación y la caracterización de micro y nanosistemas como sensores y actuadores para aplicaciones en diferentes áreas (sensores / actuadores físicos, químicos y biológicos).

Los objetivos concretos serán:

- 1) Conocer y analizar los diferentes tipos de elementos microelectromecánicos y nanoelectromecánicos (materiales, principios de transducción, estructuras básicas, técnicas de actuación y detección)
- 2) Conocer las técnicas de simulación-modelización, diseño-fabricación y caracterización para los micro-nanosistemas.
- 3) Conocer los diferentes campos de aplicación de los MEMS / NEMS y estudiar ejemplos concretos

4) Aplicar los conceptos de electrónica para diseñar nuevos dispositivos y sistemas basados en micro y nanosistemas.

Competencias

- Actitud personal
- Analizar y valorar el impacto social y medioambiental de las soluciones técnicas.
- Aplicar la electrónica como tecnología de soporte en otros campos y actividades, y no sólo en el ámbito de las Tecnologías de la Información y las Comunicaciones.
- Aplicar la legislación necesaria durante el desarrollo de la profesión de Ingeniero Técnico de Telecomunicación y manejar especificaciones, reglamentos y normas de obligado cumplimiento.
- Comunicación
- Enfocar el diseño de aplicaciones y productos electrónicos de una manera sistémica.
- Hábitos de pensamiento
- Hábitos de trabajo personal
- Trabajar en un grupo multidisciplinar y en un entorno multilingüe, y comunicar, tanto por escrito como de forma oral, conocimientos, procedimientos, resultados e ideas relacionadas con las telecomunicaciones y la electrónica.
- Trabajo en equipo
- Ética y profesionalidad

Resultados de aprendizaje

- 1. Adaptarse a situaciones imprevistas.
- 2. Adaptarse entornos multidisciplinarios e internacionales.
- 3. Aplicar la electrónica al control de sistemas de transformación energética, en especial en el campo de las energías renovables.
- 4. Asumir la responsabilidad social, ética, profesional y legal, en su caso, que se derive de la práctica del ejercicio profesional.
- Asumir y respetar el rol de los diversos miembros del equipo, así como los distintos niveles de dependencia del mismo.
- 6. Comunicar eficientemente de forma oral y/o escrita conocimientos, resultados y habilidades, tanto en entornos profesionales como ante públicos no expertos.
- 7. Concebir y diseñar sistemas bioelectrónicos en un entorno de cooperación multidisciplinar.
- 8. Concebir y diseñar sistemas micro-nano//electromecánicos
- 9. Desarrollar el pensamiento sistémico.
- 10. Estimar el posible impacto económico y social de un sistema electrónico.
- 11. Exponer de manera concisa tanto en español, catalán e inglés el proceso de diseño de un sistema electrónico desde su planteamiento hasta los resultados e implementación.
- 12. Generar propuestas innovadoras y competitivas en la actividad profesional.
- Gestionar la información incorporando de forma crítica las innovaciones del propio campo profesional, y analizar las tendencias de futuro.
- 14. Identificar la legislación aplicable en el desarrollo de un sistema electrónico de aplicación específica.
- 15. Identificar las causas de impacto medioambiental de un sistema electrónico de aplicación específica.
- Identificar, gestionar y resolver conflictos.
- 17. Plantear a nivel sistémico el proceso de diseño de un sistema electrónico de aplicación específica.
- 18. Respetar la diversidad y pluralidad de ideas, personas y situaciones.
- 19. Tomar decisiones propias.
- 20. Trabajar cooperativamente.
- 21. Trabajar en entornos complejos o inciertos y con recursos limitados.
- 22. Utilizar el inglés como idioma de comunicación y relación profesional de referencia.

Contenido

PARTE I. Tecnologías de recolección de energía (2/3 asignatura)

- 1. Introducción a las tecnologías de recolección de energía y los conceptos de "ultralow power consumption" (ULP), "Zeropower", "wireless sensor network" (WSN).
- 2. Introducción a los diferentes tipos de recolectores en función de las diferentes fuentes de energía.
- 3. Introducción a los recolectores de energía mecánica. Bloque mecánico: cantilever resonante. Bloque transductor: elemento piezoeléctrico. Modelo SPICE.
- 4. Diseño y simulación de un recolector de energía mecánica (LABORATORIO)
- 5. Implementación y caracterización de un recolector de energía mecánica (LABORATORIO)

Parte II: Sistemas microelectromecánicos en dispositivos portables (1/3 asignatura)

- 1. Introducción a los sistemas microelectromecánicos (MEMS): clasificación y descripción.
- 2. MEMS en los dispositivos móviles: tipologías y tendencias de mercado.
- 3. Casos concretos: sensores inerciales (acelerómetros), sensores biométricos (reconocimiento de huellas dactilares) y RF MEMS.

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clases de teoria	20	0,8	3, 6, 7, 8, 11, 9, 12, 15, 13, 17, 22
Prácticas de laboratorio	12	0,48	1, 3, 5, 7, 8, 9, 16, 19, 17, 22, 20, 21
Seminarios	15	0,6	2, 1, 5, 6, 11, 9, 12, 14, 16, 19, 13, 17, 18, 22, 20, 21
Tipo: Autónomas			
Estudio para la asimilación de conceptos	44	1,76	3, 7, 8, 9, 10, 14, 15, 19, 13, 17, 22
Preparación y redacción de los trabajos	44	1,76	1, 5, 6, 8, 11, 9, 10, 14, 15, 16, 19, 13, 17, 22, 20

En esta asignatura del grado, se desarrollarán sensores y actuadores enfatizando sobre todo aquellas aplicaciones más multidisciplinares, dando una visión diferente a la vista hasta ahora por los estudiantes. la metodología

estará basada en el aprendizaje a partir de proyectos, así se les propondrá a los estudiantes una determinada problemática (caso específico) que deberán ir resolviendo a lo largo del curso.

Para conseguir los objetivos las actividades formativas incluyen:

Clases teóricas. Explicación por parte del profesor de los conceptos básicos en función del caso específico a resolver

Seminarios: discusión y análisis de aspectos a resolver y planteados en función del caso específico. Clases de prácticas. Realización de prácticas en el laboratorio específico en función del caso a resolver. parte de estas prácticas incluirán el uso de herramientas de simulación.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Informe escrito del laboratorio	30%	6	0,24	3, 6, 8, 11, 10, 12, 14, 15, 19, 17
Participación Activa Prácticas de laboratorio	10%	1	0,04	2, 3, 5, 4, 8, 9, 12, 16, 19, 13, 17, 18, 20, 21
Presentación oral o por escrito de uno de los casos trabajados	35%	4	0,16	2, 1, 3, 5, 4, 6, 7, 8, 11, 9, 10, 12, 14, 15, 16, 19, 13, 17, 18, 22, 20
Pruebas escritas parciales	25%	4	0,16	3, 6, 8, 11, 10, 14, 15, 19, 13, 17

La evaluación de la asignatura tendrá 4 apartados diferenciados:

- a) 1 prueba escrita parcial de la asignatura (25%), y con calificación por encima de 4 para hacer media con el resto de calificaciones. Estas pruebas se podrán recuperar en el examen final de recuperación de la asignatura, requiriendo un 4 para hacer media.
- b) Presentación oral o por escrito de uno de los casos trabajados. Actividad obligatoria y no recuperable (30%).
- c) Las prácticas, que son de asistencia obligatoria, tendrán un peso final del 40%. La evaluación de las mismas se hará con 2 calificaciones:

Informe escrito del trabajo desarrollado en el laboratorio valorando especialmente su interpretación y discusión de los resultados en comparación con los esperados teóricamente y/o simulados (30%). Este trabajo es obligatorio y recuperable. Para recuperar/mejorar nota del informe escrito de laboratorio se fijará un segundo plazo (anunciado en el Aula Moodle de la asignatura) para revisar y dar respuesta a las correcciones que el profesor haya realizado sobre la primera versión de los trabajos originales.

Participación activa en las sesiones de laboratorio (con la posibilidad de examen oral o cuestionario en el laboratorio para valorar individualmente la participación), 10%.

La calificación "No evaluable" sólo se concederá si el estudiante no participa en ninguna actividad con evaluación (asistencia a las sesiones de laboratorio, exposición oral, exámenes).

Para obtener una calificación de Matrícula de Honor (que se puede dar al 5%del número de alumnos matriculados), será necesario tener notas por encima de 9 en todos los apartados o bien con un promedio final superior a 9.2

La calificación "No evaluable" sólo se concederá si el estudiante no participa en ninguna de las actividades evaluables (asistencia a las sesiones de laboratorio, exposición oral, exámenes).

Bibliografía

Antony, Aldrin, P. P. Subha, and M. K. Jayaraj, eds. Energy Harvesting and Storage: Fundamentals and Materials / Edited by M. K. Jayaraj, Aldrin Antony, and P. P. Subha. Gateway East, Singapore: Springer, 2022. Print. ebook i online.

Erturk, Alper, and D. J Inman. Piezoelectric Energy Harvesting Alper Erturk, Daniel J. Inman. 1st ed. Chichester: Wiley, 2011. Print. ebook i online.

Sensors, Actuators and their interfaces: a multidisciplinary introduction. Ida, N. 978-1-61353-006-1 (2020), eBook

Analysis and design principles of MEMS devices. Minhang, Bao. ISBN: 978-0-444-51616-9, (2005), eBook

Understanding MEMS: Principles and Applications, Luis Castañer, Willey, ISBN: 978-1-119-05542-6 (2015), eBook -MEMS Mechanical Sensors (Artech House microelectromechanical systems (MEMS) series), Steve Beeby et al. ISBN: 978-1-58053-536-6 (2004), eBook

Practical MEMS. Ville Kaajakari. Small Gear Publishing. ISBN: 978-0-9822991-0-4 (2009)

Microsystems Design. S.D. Senturia. Kluwer Academic Publishers (2001).

Fundamentals of Microfabrication. The Science of Miniaturization (2nd edition). M.J. Madou. CRC Press, (2002).

Sensors. Vol.7. . W. Göpel, J. Hesse, J.N. Zemel. Wiley-VCH.

Mechanical Sensors- Sensors (Update). Vol.4. H. Baltes, W. Göpel, J. Hesse. Wiley-VCH

Resonant MEMS, O.Brand, I.Dufour, S,M.Heinrich, F.Josse, Wiley-VCH, AMN collection, (2015)

Software

Pspice versión estudiante

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(PAUL) Prácticas de aula	321	Catalán	primer cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	321	Catalán	primer cuatrimestre	manaña-mixto
(TE) Teoría	321	Catalán	primer cuatrimestre	manaña-mixto