
Teaching groups languages

You can view this information at the of thisend
document.

Contact

gemma.sanchez@uab.catEmail:

Gema Sanchez AlbaladejoName:

2024/2025

Programming Lab

Code: 102767
ECTS Credits: 6

Degree Type Year

2502441 Computer Engineering OB 2

Teachers

Javier Vazquez Corral

Daniel Soto Alvarez

Roberto Ferrero Pintor

Prerequisites

The subject cannot have any official prerequisite by regulation. But students who have not completed and
previously passed the subjects of Fonaments d'informàtica and Metodologia de la Programació have a high
percentage of suspended. Therefore, it is strongly recommended that the student has satisfactorily completed
and passed the previous subjects of Fonaments d'informàtica, Metodologia de la Programació as well as
Matemàtica Discreta Therefore, you are familiar with the basic and advanced structures of programming,
Orientation objects and the concept of graph with the different methods of travel on them.

Objectives and Contextualisation

This subject is part of the Algorithmic and Information subject and should be seen as the logical continuation of
the subject Metodologia de la Programació and the practical continuation of the Matemàtica Discreta. The
basic objective is to deepen the notions of object-oriented programming introduced in the Programming
Methodology and expand with other programming concepts and other more complex data structures, as well
as efficient algorithms for traversing. The concept of a recursive algorithm with simple and more complex
recursive algorithms such as those related to tree and graph paths will be introduced. In addition, search
algorithms and efficient management will be introduced and deepen the concept of time and space cost of an
algorithm. At the end of the course the student must be able to design and program solutions to complex
problems in an optimal way.

In this way, the training objectives that are proposed for the subject are the following:

Be able to analyze a complex problem, design an optimal solution, implement it, calculate its cost and
1

1.
2.
3.
4.

5.
6.
7.

Be able to analyze a complex problem, design an optimal solution, implement it, calculate its cost and
test it.
Understand and know how to use complex data structures such as trees, graphs etc. and use them
correctly and in an efficient way to solve complex algorithmic problems.
Understand and correctly apply the advanced principles of object-oriented programming: templates ,
abstract classes, virtual functions.
To provide the student with the ability to design algorithms for the resolution of complex problems,
seeing complex algorithms of travel and search in complex data structures. In addition to analyzing the
temporal and spatial complexity of them in order to choose the solution that best suits the needs of each
moment.
Introduce the concept of recursion and its application to the path of complex recursive structures, as
well as being able to analyze the complexity of recursive algorithms.
Program in a real programming language and be able to debug your own programs.
Develop the programs following a style norms tending to achieve quality programs. Within these style
rules include those that facilitate the understanding of the code, such as the use of comments, the
tabulation of the code, the use of appropriate names for variables and functions, etc. And the use of
exceptions.

Competences

Acquire thinking habits.
Have the capacity to conceive, develop and maintain computer systems, services and applications
employing the methods of software engineering as an instrument to ensure quality.
Know and apply the basic algorithmic procedures of computer technologies to design solutions for
problems and to analyse the adequacy and complexity of the algorithms proposed.
Knowledge, design and efficient use of the most suitable data types and structures for problems solving.

Learning Outcomes

Apply program debugging, testing and correction strategies.
Develop a capacity for analysis, synthesis and prospection.
Develop programs using good programming style and documenting them properly.
Identify possible troubleshooting strategies by means of one's own concepts of the object-oriented
programming paradigm.
Identify the computational complexity of an algorithm in terms of memory resources and run time.
Know and understand programming paradigms.
Select and apply the most appropriate combination of data structures and strategies to resolve a
computing problem.

Content

0. Introduction
Objectives and presentation of the subject. Review of Programming Oriented to Objects and Dynamic Data
Structures.

1. Object orientation
Advanced object paradigm. Templates Heritage, lessons abstract, virtual functions and polymorphism.

2. Non-linear data structures. hash

"Hashing" techniques. Hash Matrices and Hash lists. Hash Functions.

3. Recursion and Sorting algorithms

2

Introduction to recursive algorithms. Bubble method, QuickSort, mergesort. Recursivity Calculation complexity.

4. Non-linear data structures. Graphs
Representations and tours. BFS, DFS, Resolution of problems with graphs.

5. Non-linear data structures. Trees

Definition and representation of a tree. Paths of trees. Binary Heaps. Red-Black Tree.

6. Python Basics

Basic programming concepts in Python

Activities and Methodology

Title Hours ECTS Learning Outcomes

Type: Directed

Face-to-face classes 50 2 1, 2, 3, 4, 5, 6, 7

Type: Supervised

Consultations 1 0.04 1, 2, 3, 4, 5, 6, 7

Type: Autonomous

Autonomous work 46 1.84 1, 2, 3, 4, 5, 7

Individual Studio 13 0.52 2, 4, 5, 6

Previous preparation of the classes 34 1.36 2, 4, 5, 6

The teaching methodology of the subject is based on the principle that "programming is the only way to learn to program" and, therefore, it will be focused mainly on the student's practical work. It is also based on making the most of the face-to-face time that the student spends with the teacher. In this way, descriptive theoretical concepts, easily reached by the student by watching videos or reading articles, will be done autonomously (and guided) by the student. While the implementation of these concepts or their expansion will be done in class with the help of the teacher. The main objective of the subject is for the student to know how to solve a given problem, efficiently, using complex data structures, if necessary. For this reason, learning will focus on accompanying the student in his problem-solving task based on theoretical concepts previously studied autonomously. The C++ programming language will mainly be used, and some programming concepts in python will be given.

The general methodology of the subject can be divided into three phases:

Preparation of the class: The objective of this phase is that the students can learn the concepts that will be
worked on in the following session through various activities offered by the teaching staff, such as viewing
videos, reading texts, etc.

 The objective of this phase is to consolidate the concepts seen and put them into valueClass face-to-face:
within the context of the subject. The faculty will ensure that the students deepen these concepts through
exercises (more or less) guided during the session, and adding new nuances to concepts learned
autonomously when necessary. In this way the face-to-face class is used much more since the descriptive
concepts are already known by the student and one can fully enter into its use and expansion, which are the
points in which the student may need the help of the teacher more.

 so that the students take ease in the use of complex structures and the algorithmsWork autonomous:
associated with them. They will have to do a part of the work on their own, whether solving new exercises or
within a project.

3

The work of the project and of the laboratory sessions should be done in groups of 2 people.

The teaching management of the subject will be done through Caronte (), and thehttp://caronte.uab.cat/
"campus Virtual" platform (https://cv.uab.cat/).

Transversal competences

 This competence will beT01.02 Develop the capacity for analysis, synthesis and prospective.
developed during the face-to-face sessions, where the student, after having consolidated some
theoretical concepts, will analyze a practical problem and propose an optimal solution. It will be taken
into accountin the evaluation of the different parts of the subject.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be
reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continous Assessment Activities

Title Weighting Hours ECTS Learning Outcomes

Delivery problems 20% Final grade 0 0 2, 4, 5, 6, 7

First partial 40% Individual evaluation note. 1.8 0.07 1, 2, 3, 4, 5, 6, 7

Programming Project 40% Final grade 0 0 1, 2, 3, 4, 7

Recovery test see the description of the evaluation method 2 0.08 1, 2, 3, 4, 5, 6, 7

Second partial 50% Individual evaluation note. 2 0.08 1, 2, 3, 4, 5, 6, 7

Third Partial 10% Individual evaluation note. 0.2 0.01 1, 2, 3, 4, 5, 6, 7

The evaluation of the subject will take into account three types of evaluation activities: delivery of problems,
individual evaluation and programming project. The of the subject is obtained by combining theFinal note
evaluation of these 3 activities as follows:

Final Note = (0.2 * Evaluation Problems) + (0.4 * Project) + (0.4 * Individual Evaluation)

 This section includes the delivery of the exercises that are proposed throughout theDelivery problems:
course and other activities that take place in the problem sessions.

 But keep in mind that it is worth 2 points on the final grade of the subject and without the problems delivered, a 5 in each part of the rest of the subject would mean failing it.It is not necessary to get a minimum grade in this activity in order to pass the course.

Exercises that are delivered late or that have an evaluation of suspended and redeliver atcan be recovered
any time during the course of the subject, with a before the final exam date reduction on the grade of the

 The problems will be weighted according to the weight of the subject to the whole of the subject, andtwenty%.
the number of problems that they have to deliver for each subject.

 This section includes the results of the individual tests that will be doneEvaluation individual:
4

https://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=https://translate.google.com/translate%3Fhl%3Des%26prev%3D_t%26sl%3Dca%26tl%3Des%26u%3Dhttp://cv.uab.cat/

 This section includes the results of the individual tests that will be doneEvaluation individual:
throughout the course. There will be two partial tests that will be done during the class period of the
course during class time and a final test during the official exam period. This final test will be recovery
and will only do students who have not passed any of the two sets. If one of the two partials has been
passed, but the other does not, in this test only the part of the subject corresponding to the part that has
not been passed must be recovered.

You should get a in each of the three partials and a note average minimum of to be ableminimum grade of 4 5
to pass the subject.

The final grade will be the average of the two partials: +Individual Evaluation = (0.4 * Partial1) + (0.5 * Partial2)
(0.1 * Partial3)

 includes all the work of the programming project. It includes the evaluation of the two deliveries ofDraft:
the project (a partial delivery in the middle of the course and the final delivery) and the evaluation of the
follow-up of the project that will be made to the face-to-face sessions correspond The final grade will be
calculated as follows:

Project = (0.2 * Project monitoring evaluation) + (0.3 * Partial Delivery 1) + (0.5 * Final Delivery)

You should get a in the evaluation of of the project and a 5minimum grade of 4 tracing minimum note of
in the of the project to be able to approve the project.final delivery
You should get a at to be able to pass the subject.minimum grade of 5 draft
The note of the final delivery of the project if the project note is> = 3 and the individualcan berecovered
evaluation note is> = 5.
The will be an exam that will be taken together with the last partial andproject monitoring evaluation
can be recovered in the final exam.

Do not A student will be considered not evaluable (NA) if he does not make at least 50% of theevaluable:
deliveries of exercises and does not do any of the evaluation tests: partial 1, partial 2, final test of recovery,
final delivery of the practice.

suspended: If the calculation of the final grade is equal to or greater than 5 but does not reach the minimum
required in any of the evaluation activities, the grade final it will be suspended and a 4.5 will be placed on the
note in the student's file .

convalidations: For the repeating students, the previous year's project grade (course 2023 -24) will be
validated if these conditions are met:

 The final grade of the project of the previous course is greater than or equal to 7 to)

 The grade of the individual evaluation of the previous course is greater than or equal to 3b)

MH: There will be as many enrollments as possible within the regulations of the university, starting with the
highest grades and as long as the minimum grade is a 9.

Reviews: For Each evaluation activity will indicate a place, date and time of revision in which the student can
review the activity with the teacher. In this context, claims may be made on the activity grade, which will be
evaluated by the faculty responsible for the subject. If the student does not appear in this review, this activity
will not be reviewed later.

Important note about copies and plagiarism:
Without prejudice to other disciplinary measures deemed appropriate, and in accordance with current
academic regulations, the Irregularities committed by a student that may lead to a variation of the grade will be
scored with a zero (0). the evaluation activities qualified in this way and by this procedure will not be
recoverable. If it is necessary to overcome any of these evaluation activities p ara appro b ar the subject, this
subject will be suspended directly, without the opportunity of recover it in the same course. These irregularities
include, otr to s:

the total or partial copy of a practice, report, or any other evaluation activity;

let copy;
5

let copy;
presenta group work not done entirely by the members of the group;
present as own materials prepared by a third party, although they are translations or adaptations, and in
general works with non original and exclusive elements of the student;
have communication devices (such as mobile phones, smart watches , etc.) accessible during the
evaluation tests theoretical Individual practices (exams).

In these cases, the numerical note of the file will be the lower value between 3.0 and the weighted average of
the notes (and therefore the approved by compensation will not be possible).
In the evaluation of the delivery of problems and practices, copy detection tools of the program code will be
used.

Note on the planning of evaluation activities:
The dates of continuous evaluation and delivery of works will be published at the beginning of the course and
may be subject to changes in programming for reasons of adaptation to possible incidents. You will always be
informed through Caronte and/or i/o Campus Virtual about these changes since it is understood that these are
the usual platforms for exchanging information between teachers and students.

Single evaluation:
 This subject does not foresee the single evaluation system.

Bibliography

http://www.cplusplus.com/ : The C++ Resources Network
https://es.wikibooks.org/wiki/Programaci%C3%B3n_en_C%2B%2B: Programación en C++ - Wikilibros
https://www.geeksforgeeks.org/c-plus-plus/?ref=ghm
Mark Allen Weiss. Pearson. 2014.Data Structures and Data Analysis in C++.
B. Eckel. , Prentice-Hall, 1999Thinking in C++, Volume 1: Introduction to Standard C++
B. Eckel. , Prentice-Hall, 1999Thinking in C++, Volume 2: Standard Libraries and Advanced Topics
F. Xhafa, P. Vázquez, J. Marco, X. Molinero, A. Martín: .Programación en C++ para ingenieros
Thomson, 2006
Scott Meyers. O'ReillyEffective Modern C++: Specifics Ways to Improve Your Use of C++11 and 14.
Media, Incorporated, 2014.
Robert C. Martin. AnayaCódigo limpio : manual de estilo para el desarrollo ágil de software.
Multimedia, 2012
Thinking in PYTHON Bruce Eckel (se puede descargar de http://www.bruceeckel.com).
Learning PYTHON 2nd Edition. Mark Lutz and David Ascher, Safari Tech Books Online.
Manuals de Python (de la pagina web oficial).
https://www.geeksforgeeks.org/python-programming-language/?ref=ghm
Llibres electronics interactius de python:

http://interactivepython.org/runestone/static/thinkcspy/toc.html#t-o-c
http://interactivepython.org/runestone/static/pythonds/index.html
http://www.pythontutor.com/

Software

Microsoft Visual Studio

Spyder Anaconda

6

http://www.cplusplus.com/
https://es.wikibooks.org/wiki/Programaci%C3%B3n_en_C++

Language list

Name Group Language Semester Turn

(PAUL) Classroom practices 411 Catalan first semester morning-mixed

(PAUL) Classroom practices 412 Catalan first semester morning-mixed

(PAUL) Classroom practices 413 Catalan first semester morning-mixed

(PAUL) Classroom practices 431 Catalan first semester morning-mixed

(PAUL) Classroom practices 432 Catalan first semester morning-mixed

(PAUL) Classroom practices 451 Catalan first semester afternoon

(PAUL) Classroom practices 452 Catalan first semester afternoon

(PAUL) Classroom practices 453 Catalan first semester afternoon

7

