
Teaching groups languages

You can view this information at the  of thisend
document.

Contact

javier.sanchez.pujadas@uab.catEmail:

Francisco Javier Sánchez PujadasName:

2024/2025

Compilers

Code: 102782
ECTS Credits: 6

Degree Type Year

2502441 Computer Engineering OB 3

2502441 Computer Engineering OT 4

Prerequisites

It is advisable to have studied the subjects:

Fundamentals of Computing
Methodology of the Programming
Programming Laboratory

Knowledge that may be useful for this subject is:

Knowledge about imperative and object-oriented programming languages such as C / C ++ will facilitate
the understanding of the practical examples given in theory.
For the generating part of the code the knowledge about the assembler will be useful.
The knowledge about recursivity of the Algorithm Analysis and Design course will help to understand
the functioning of the syntactic analysis.

Objectives and Contextualisation

Knowledges:

Introduce the fundamental concepts and structures of a compiler of imperative languages.
Improve the use and understanding of compilers (efficiency, language limits, etc.), and programming
languages.
Practical implementation of simple parsers.

Recognizers of configuration files with complex parameters.
Flexibilization of dialogues with the user.

Solve problems using syntactic and semantic techniques.
Definition and implementation of grammars to solve problems.
Decision between implementing an entire compiler or using a tool to generate compilers based
on the type of problem to be solved.

Implement complex algorithms.
Test strategies of complex programs.
Implementation of recursive algorithms.
Use of tools that generate code.

Modularization in subproblems strongly coupled.
1



1.  
2.  

3.  
4.  

5.  
6.  
7.  

1.  
2.  
3.  
4.  

Modularization in subproblems strongly coupled.
Adaptation and use of a program already made.

Abilities:

Improve the quality of the programs created thanks to the greater knowledge of the operation of the
compilers.
Correct use of the structures of the programming languages to obtain more optimal programs.
Resolving complexity problems by applying the principles of modularity and recursion.
Use of automatic programming tools.

Competences

Computer Engineering
Acquire personal work habits.
Acquire thinking habits.
Have the capacity for the basic theory of programming languages and the associated techniques of
lexical, syntactic and semantic processing, and know how to apply them to the creation, design and
processing of languages.
Have the capacity to conceive, develop and maintain computer systems, services and applications
employing the methods of software engineering as an instrument to ensure quality.

Learning Outcomes

Adapt knowledge of lexical analysis , syntactic and semantic code generation in basic compiler .
Apply knowledge of lexical, syntactic and semantic analysis to the generation of code in a basic
compiler.
Develop a mode of thought and critical reasoning.
Know and understand the processes of lexical, syntactic and semantic analysis of programming
languages and analyse the different ways of using each of them.
Make one's own decisions.
Manage time and resources available. Work in an organized manner .
Prevent and solve problems.

Content

I. Introduction. Basics

Introduction to compilers.
Compiler construction strategies.
Definition of compiler and its parts.
Presentation of the following subjects of the course.

II. Lexicographical analysis: SCANNER.

Definition of lexicographical analysis
Regular expressions
Implementation of a lexicographical analyzer (Scanner)
Lexicographical analysis.

III. Grammar and syntactic analysis: PARSER.

Definition of context-free grammars.

Notations to define grammars.
2



Notations to define grammars.
Characteristics of grammar and its associated Programming Languages.
Grams LL (1).
Parsers LL (1).
Recovery of errors in Parsers LL (1).
Parsers LR, SLR, LALR.
Practical considerations

IV. Semantic analysis

Syntax-directed translation.
Table of Symbols.
Semantic analysis of statements.
Semantic analysis of expressions.

V. Organization of the memory at run time.

Execution environment and static memory allocation.
Allocation of the stack.
Heap

VI. Code generation

Abstract machine
Generation of expressions code.
Process of references to data structures.
Generation of functions code.
Generation of control structures code.

Activities and Methodology

Title Hours ECTS Learning Outcomes

Type: Directed

Seamless Ccasses (theory, problems and practices) 46 1.84 1, 2, 4, 3, 6, 5, 7

Type: Autonomous

Preparation and implementation of the practice 47 1.88 1, 2, 4, 3, 6, 5, 7

Preparation and resolution of problems 12 0.48 1, 2, 4, 3, 6, 5, 7

Study of the subject taught in theoretical classes 36 1.44 1, 2, 4, 3

This subject has a very strong link between what the theory is, an explanation of how compilers work and can
be created, and practice or problems, as a compiler is actually created. During theory classes, concepts and
techniques that are necessary to solve the practice are explained. The concepts of practice and problems are
related, since the student will design a solution to solve a problem and implement it in practice. In this way, the
student's learning process will be based on these three types of activities: theory classes, seminars or
explanations of how to apply theoretical concepts to practice and practical classes or problems in which
students will present and discuss their solutions

Unified class sessions

3



we do not differentiate between theory classes, problems and practices. In this way the session begins by
explaining the theoretical concepts as in a theory class. Then these concepts are applied to problems or
practices. Thus the session ends up as a class of problems or practices.

Theory

The theory classes will serve to introduce the concepts that are detailed in the syllabus of the subject. They will
be based on the teacher's explanations, which will be assisted by complementary material in the form of
photocopies or transparencies. The student must complete the theory classes with the hours of study, which
should serve to finish understanding the contents of the subject and be able to prepare correctly the practice
sessions. It must be borne in mind that the theory classes present a continuity throughout the course, so in
order to correctly follow a class one must have assimilated what was explained in the previous classes.

Problems

The classes of problems will be devoted basically to the detailed explanation of how to apply the theoretical
concepts ina practical way, and will serve as a bridge between the theoretical classes and the practices.
Teachers will raise problems and indicate how they are resolved by preparing students to solve the practices. It
is very important to have assimilated the previous theoretical concepts to be able to correctly follow the kinds
of problems.

Before each session of problems the teacher will propose a list of exercises that the students should try to
solve previously to be able to present doubts at the time of class. In some sessions, common problems arising
in the practices will be prepared or discussed.

Practice

The practice will consist of to make modifications on the compiler explained to theory. The practice will be done
in groups of 1, 2 or 3 people. The sessions will be divided into 3 blocks: Syntactic Analysis, Semantic Analysis
and Code Generation. Each block will have one or more deliveries. The student will be able to test each
delivery with a self-test consisting of the tests that the practice must pass to pass. After the teacher will pass a
more complete test that will be the basis for obtaining the note of group practice. The practice can be tested
with a web checker as many times as the student needs before the delivery date. In addition, it will be possible
to evaluate the delivery, and the knowledge obtained by each student of the group with a small oral test or
written by the individual note.

Cross-curricular competences: The cross-curricular competences will be worked out and evaluated at various
moments throughout the course. Some examples of how they work are the following:

T01.01 - Develop a way of thinking and critical reasoning:
Theoretical classes explain examples of existing languages and compilers ofwhich the pros,
cons and design errors are valued.
In problemclasses, students must create an abstract model of the problem to be able to solve it.
In practice, students must deduce what semantic restrictions the compiler must check.

T02.03- Manage time andresources available. Work in an organized way:
In practicum, the students must decide in which order to solve the various problems of the
practice and what is their strategy to face them.

T02.04 - Preventing and solving problems:
In practice there are strong dependencies between the different stages of the compilation.
Students must make decisions about what they are doing in the first stages to ensure that the
following are not too complicated.

T02.05 - Take own decisions:
As for problems and practices, students must make decisions about how to solve the various
problems that appear

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be
reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

4



Assessment

Continous Assessment Activities

Title Weighting Hours ECTS Learning Outcomes

Final theory exam See activities and evaluation tools 3 0.12 1, 2, 4, 3

Generation of practice code See activities and evaluation tools 1 0.04 2, 3, 6, 5, 7

Itermediate theory exam/s See activities and evaluation tools 2 0.08 1, 2, 4, 3

Practicum exam See activities and evaluation tools 1 0.04 1, 2, 3

Semantic analysis of the practice See activities and evaluation tools 1 0.04 1, 4, 3, 6, 5, 7

Syntactic analysis of the practice See activities and evaluation tools 1 0.04 1, 4, 3, 6, 5, 7

Evaluation criteria and indicators:

Understanding the theoretical concepts of the subject.
Correct use of the main tools used to build a compiler.
Application of the general principles of design in the resolution of complex problems.
Try complex problems.

Activities and evaluation instruments:

Practical notes: In this section there is a group note and an individual:
Group note: Corresponds to the grade obtained for group deliveries of the practice.
Individual note: This is the score obtained in the practice exam.

Note Theory: corresponds to the final exam or partial exam / s of theory on the subject. It has been
approved for the partial examinations in order to eliminate the recovery exam.

The final grade of the subject is obtained by combining the evaluation of these two activities in the following
way:

Final Note = 0.4 * Practical Notes + 0.4 * Note Theory+ 0.2 * Note problems.

Practical Notes = 0.2 * Individual Note + 0.8 * Note Group
Individual Note = Examination of practices.
Note Group = 0.2 * Group A. Syntactic + 0.3 * Semantic Group A. + 0.5 * Generation Group Code

The group notes for syntactic, semantic, and code generation can correspond to a weighted average of several
deliveries.

Validation of internships:

Practices of previous years are not validated.

Recovery of practices:

In the case of having suspended a group delivery, it will be possible to recover in the following deliveries of the
practice. Thenote will be 0.8 * (max (note recovery, delivery note suspended) -note delivery suspended) + note
delivery suspended. In the case of suspending the practice exam, the student must submit to a practice
recovery exam on the day of the final exam.

Conditions to pass the subject:

5



Final Note> = 5
Practical note> = 4 and have approved each of the individual and group deliveries.
Theory note> = 5 and have approved separately the parts that have the theory exam (exam note>=4).
Conditions for the non-evaluable:

Do not have any part of the subject suspended.

Conditions for subject failure:

Do not reach an average grade higher than or equal to 5.
failing to pass some of the evaluation activities of the subject although the average exceeds 5. In this case, the
note will be the minimum score obtained from one of the parties (exams or practices).

Conditions for honor grade:

The matrícula of honor can be obtained with a note average superior or equal to 9.0.
Due to the fact that there is a limited number of matriculations of honor that can be given by group, they will be
awarded in order of note from major to minor.

Practices, papers or exams copied:

Notwithstanding other disciplinary measures deemed appropriate, and in accordance with the current
academic regulations, irregularities committed by a student that can lead to a variation of the qualification will
be classified by zero (0). Assessment activities qualified in this way and by this procedure will not be
recoverable. If it is necessary to pass any of these assessment activities to pass the subject, this subject will
be suspended directly, without opportunity to recover it in the same course. These irregularitiesinclude, among
others:
- the total or partial copy of a practice, report, or any other evaluation activity;
- let copy;
- present a group work not done entirely by the members of the group;
- present as own materials prepared by a third party, although they are translations or adaptations, and
generally works with non-original and exclusive elements of the student;
- Have communication devices (such as mobile phones, smart watches, etc.) accessible during
theoretical-practical tests (individual exams).

In case the student has committed irregularities in an evaluation act, the numerical note of the file will be the
lowest value between 3.0 and the corresponding grade according to the method of evaluation of the subject
(and therefore not the approved one will be possible for compensation).

In summary: copying, copying, or plagiarizing in any of the assessment activities is equivalent to a SUSPENS
with a score of less than 3.0.

Publication notes, dates of exams, etc.:

The dates of continuous evaluation and delivery of works will be published on the virtual campus and may be
subject to changes of programming for reasons of adaptation to possible incidents. The virtual campus will
always be informed about these changes as it is understood to be the usual mechanism for exchanging
information between teacher and students.

Since a mark server is used, due dates for practice and problems may also be posted on this server, although
they will usually be posted on the virtual campus.

Procedure for the review of qualifications

For each evaluation activity, a place, date and revision will be indicated in which the student can review the
activity with the teacher. In this context, claims can be made about the activity note, which will be evaluated by
the teachers responsible for the subject. If the student does not submit to this review, this activity will not be
reviewed later.

Unique assessment:

6



It will be assessed the same as the continuous assessment. But with the following differences:

Practices and problems will be given on the day of the subject's recovery exam. In this case, the
practices do not have the possibility of recovery, since the student cannot correct and see the note as
many times as he wants before delivery.
Due to the fact that there is no monitoring of the student's work, it will be mandatory to take a practice
validation exam, which must be passed.
The theory and practical exams will be held on the day of the subject's recovery exam.
If necessary, the students will be called to take the theory and practical recovery exams.

Bibliography

Basic bibliography

Charles N. Fischer & Richard J. Leblanc jr.: . The Benjamin / CummingsCrafting a Compiler with C
Publishing Company inc., 1991.
Jean-Paul Tremblay & Paul G. Sorenson: .The Theory and Practice of Compiler Writing
MCGRAW-HILL, 1985.
David A. Watt: . Prentice Hall, 1990.Programming Language Concepts and Paradigms
Alicia Garrido & all: . Publicaciones Universidad de Alicante, 2002.Diseño de compiladores

Reference bibliography

David A. Watt.: . Prentice Hall, 1993.Programming Language Processors
Anthony J. Field & Peter G. Harrison: . Addison-Wesley, 1988.Functional Programming
Terrence W. Pratt: . Prentice Hall InternationalProgramming Languages: Design and Implementation
Editions, 1984.
Edited by G. Goos and J. Hartmanis: . Springer-Verlag,Compiler Construction. An Advanced Course
1974
Jean-Paul Tremblay & Paul G. Sorenson: .An Implementation Guide to Compiler Writing
MCGRAW-HILL, 1982.
Ronald Mak: . Wiley, 1991.Writing Compilers & Interpreters: An Applied Approach
J. P. Brown: . Wiley, 1979.Writing Interactive Compilers and Interpreters
Allen Y. Holub: . Prentice Hall, 1990.Compiler Design in C

Web:

 https://es.wikipedia.org/wiki/CompiladorCompilador,
Historia de la construcción de los compiladores,
https://es.wikipedia.org/wiki/Historia_de_la_construcci%C3%B3n_de_los_compiladores
Tutorial de diseño decompiladores para principiantes: guía completa,
https://www.guru99.com/es/compiler-tutorial.html

Software

The practice is done with the windows operating system. A compiler generator based on the CoSeL
programming language is used for practice. All the necessary software can be found on the virtual campus.
In addition, a web proofreader of the practices that students can use is used.

You must bring a Windows laptop to do the exercises and problems in class.

7



Language list

Name Group Language Semester Turn

(PAUL) Classroom practices 440 Catalan second semester morning-mixed

(PAUL) Classroom practices 441 Catalan second semester morning-mixed

8


