

Visión por Computador

Código: 104423 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
2503740 Matemática Computacional y Analítica de Datos	ОТ	4

Contacto

Nombre: Felipe Lumbreras Ruiz

Correo electrónico: felipe.lumbreras@uab.cat

Idiomas de los grupos

Puede consultar esta información al final del

documento.

Prerrequisitos

No hay prerrequisitos. Esta asignatura es bastante autocontenida. Sin embargo, en esta asignatura se tocarán temas relacionados con cálculo matemático, probabilidad y teoría de la señal, por otro lado, problemas y prácticas en muchos casos serán pequeños programas, por lo que se necesita una buena base en matemáticas y en programación.

Objetivos y contextualización

Los objetivos de la asignatura se pueden resumir en:

Conocimientos:

Conocer, entender y saber modelar la adquisición con diferentes sensores, especialmente con cámaras. Describir y relacionar las fases en que se divide la solución a un problema de análisis de procesamiento de la señal.

Identificar las ventajas e inconvenientes de los algoritmos de procesamiento de imágenes.

Resolver problemas reales relacionados con técnicas de procesamiento de imágenes.

Entender el resultado y las limitaciones de las técnicas de visión en diferentes casos de estudio.

Saber escoger el algoritmo de procesamiento de imágenes más adecuado para solucionar una tarea dada.

Saber elegir las técnicas de visión por computador más adecuadas para solucionar problemas contextualizados.

Habilidades:

Reconocer las situaciones en las que la aplicación de algoritmos de procesamiento de imágenes puede ser adecuada para solucionar un problema.

Analizar el problema a resolver y diseñar la solución óptima aplicando las técnicas aprendidas.

Redactar documentos técnicos relacionados con el análisis y la solución de un problema.

Programar los algoritmos básicos para solucionar los problemas propuestos.

Evaluar los resultados de la solución implementada y valorar las posibles mejoras.

Defender y argumentar las decisiones tomadas en la solución de los problemas propuestos.

Resultados de aprendizaje

- 1. CM45 (Competencia) Extraer los descriptores de forma de los objetos presentes en una escena.
- 2. CM45 (Competencia) Extraer los descriptores de forma de los objetos presentes en una escena.
- 3. CM46 (Competencia) Integrar de forma eficiente datos heterogéneos procedentes de diversos dispositivos y sistemas interconectados.
- 4. CM46 (Competencia) Integrar de forma eficiente datos heterogéneos procedentes de diversos dispositivos y sistemas interconectados.
- 5. SM45 (Habilidad) Aplicar los métodos básicos de procesamiento de imágenes a problemas específicos.
- 6. SM45 (Habilidad) Aplicar los métodos básicos de procesamiento de imágenes a problemas específicos.
- 7. SM45 (Habilidad) Aplicar los métodos básicos de procesamiento de imágenes a problemas específicos.
- 8. SM46 (Habilidad) Desarrollar aplicaciones de visión por computador para solucionar problemas básicos de análisis de imágenes y vídeo.
- 9. SM46 (Habilidad) Desarrollar aplicaciones de visión por computador para solucionar problemas básicos de análisis de imágenes y vídeo.

Contenido

- 1. Introducción al tratamiento de la señal, imagen y vídeo
- 2. Formación de la imagen
- 3. Procesamiento de imágenes
- 4. Filtrado lineal (espacial)
- 5. Filtrado frecuencial
- 6. Filtrado no lineal
- 7. Transformaciones geométricas
- 8. Segmentación
- 9. Características
- 10. Clasificación
- 11. Miscelánea (aplicaciones, movimiento)
- 12. Deep Learning

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clase magistral	20	0,8	CM45, CM46, SM45, SM46, CM45
Prácticas de laboratorio	10	0,4	CM45, CM46, SM45, SM46, CM45
Seminario de problemas	11,5	0,46	CM45, CM46, SM45, SM46, CM45
Tipo: Supervisadas			
Análisis y diseño del proyecto	12	0,48	CM45, CM46, SM45, SM46, CM45
Documentación del proyecto	6	0,24	CM45, CM46, SM45, SM46, CM45
Tipo: Autónomas			
Estudio personal	45	1,8	CM45, CM46, SM45, SM46, CM45
Presentación oral	12	0,48	CM45, CM46, SM45, SM46, CM45

Las diferentes actividades que se llevarán a cabo en la asignatura se organizan de la siguiente manera:

Clases magistrales

Se expondrán los principales conceptos y algoritmos de cada tema de teoría. Estos temas suponen el punto de partida en el trabajo de la asignatura.

Seminarios de problemas

Serán clases con grupos reducidos de estudiantes que faciliten la interacción. En estas clases se plantearán casos prácticos que requieran el diseño de una solución en la que se utilicen los métodos vistos en las clases de teoría.

Prácticas de laboratorio

Habrá una serie de prácticas comunes que permitirán alcanzar unas competencias básicas en temas de visión. Una primera entrega fuera de horas de laboratorio para conocer las herramientas. Tres prácticas temáticas relacionadas estrechamente con la teoría que se está dando a la vez o previa. Finalmente un proyecto elegido por los mismos alumnos. En la segunda parte del semestre deberán analizar este problema, diseñar e implementar soluciones basadas en diferentes algoritmos de procesamiento y visión vistos en clase, analizar los resultados obtenidos en cada uno de los métodos, defender su solución y hacer la presentación en público de los resultados.

Los grupos de trabajo estarán formados por grupos de 1 a 3 alumnos y deberán formar la segunda semana del curso. Estos grupos de trabajo se deberán mantener hasta el final del curso y deberán autogestionar: reparto de roles, planificación del trabajo, asignación de tareas, gestión de los recursos disponibles, conflictos, etc. Aunque el profesor guiará el proceso de aprendizaje, su intervención en la gestión delos grupos será mínima.

Para desarrollar el proyecto, los grupos trabajarán de forma autónoma y las sesiones de prácticas se dedicarán principalmente a resolver dudas con el profesor que hará el seguimiento del estado del proyecto, indicará errores a corregir, propondrá mejoras, etc.

Algunas de las sesiones se marcarán como sesiones de control donde se deberá entregar una práctica. En estas sesiones los grupos deberán explicar el trabajo hecho y el profesor hará cuestiones a todos los miembros del grupo para valorar el trabajo realizado. La asistencia a estas sesiones es obligatoria.

En la entrega final los grupos harán una presentación del proyecto donde explicarán el proyecto desarrollado, la solución adoptada y los resultados obtenidos. En esta presentación cada miembro del grupo deberá hacer una parte de la presentación.

El código de las prácticas comunes se desarrollará en lenguaje Matlab y python. La parte del proyecto será libre a elegir por los alumnos.

Plataforma virtual:

Caronte será la plataforma que utilizaremos para la comunicación y la entrega de tareas así como de almacenamiento de todo el material de la asignatura.

Asistencia:

Teoría: recomendable, Problemas: recomendable, Prácticas: obligatoria, Seguimiento del proyecto: recomendable, Controles del proyecto: obligatoria, Presentación del proyecto: obligatoria.

Competencias transversales:

- T02.01 Trabajar de forma autónoma.
- T02.03 Gestionar el tiempo y los recursos disponibles. Trabajar de forma organizada.
- T03.01 Trabajar cooperativamente.
- T04.01 Comunicar eficientemente, de forma oral y / o escrita, conocimientos, resultados y habilidades, tanto en entornos profesionales como ante públicos no expertos.

Las Competencias Transversales ligadas a T02 son evaluadas en teoría y problemas en la mayor parte. No hay una parte específica de la nota por el trabajo autónomo y la gestión del tiempo, porque está implícito en la forma de trabajarlas. Tanto la teoría como los problemas, como el Lab0 son las partes de la asignaturaque el alumno tiene que hacer de forma individual (T02.01) y los problemas y el Lab0 tienen asociadas hitos y fechas de entrega que irían en la línea marcada en (T02.03). Las vinculadas con T03 y T04 se trabajan y son evaluadas en la parte de prácticas. Una parte de la nota del proyecto final refleja como se expresa el alumno en público a la hora de transmitir los resultados de su trabajo (T04.01), otra parte de la nota de este proyecto final evalúa la redacción del material de apoyo del proyecto (T04.01). Los Lab1, Lab2, Lab3 y Proyecto se hacen en grupo y refuerzan las competencias de trabajo cooperativo (T3.01).

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

	14	74.		
Título	Peso	Horas	ECTS	Resultados de aprendizaje
Evaluación grupal	10	0,25	0,01	
Individual theoretical tests	60	6	0,24	CM45, CM46, SM45, SM46
Presentación del proyecto	10	0,25	0,01	
Prácticas	20	2	0,08	CM45, CM46, SM45, SM46

Evaluación

Actividades e instrumentos de evaluación:

EVALUACIÓN CONTINUADA.

El alumno ve en todo momento su evolución a la asignatura y como se alcanzan los diferentes objetivos tanto de prácticas como de problemas y teoría.

Hay dos bloques diferenciados: Bloque 1 relacionado con Procesamiento de la señal y de las imágenes (evaluado con examen) y Bloque 2 relacionado con Visión por Computador (evaluado con ABP [Aprendizaje basado en Proyecto])

Adicionalmente existen elementos opcionales para subir nota: test, retos, lab3

BLOQUE1

- Conocimientos teóricos

La nota final de teoría se calculará a partir de la nota de una prueba: Nota Teoría Bloque 1

Esta prueba pretende una evaluación individualizada del estudiante con sus capacidades de resolver problemas utilizando las técnicas explicadas en clase, así como evaluar el nivel de conceptualización que el estudiante ha hecho de las técnicas vistas.

Recuperación (teoría). Si el alumno quiere subir nota o recuperar puede presentarse al examen final.

Opcionales (teoría). Test semanales de entre 5 a 15 preguntas test

- Problemas

Los problemas serán 3 o 4 ejercicios evaluados junto con las pruebas de teoría, ya que los problemas complementan la teoría: Nota de Problemas Bloque 1

Recuperación (problemas). Si el alumno quiere subir nota o recuperar puede presentarse al examen final dividido también en dos bloques.

Opcionales (problemas). Retos semanales que consisten en un problemamás largo para entregar en forma de miniinforme.

- Prácticas

La parte práctica es una serie de pequeños proyectos. La evaluación de esta parte incluirá:

Evaluación individual del Lab0 que introduce las herramientas de trabajo que se utilizarán en las prácticas. También las partes de exposición del proyecto final son evaluadas de forma individual.

Evaluación conjunta de las prácticas: nota única para todos los miembros del grupo de trabajo que valorará los resultados obtenidos y la calidad del código.

Evaluación del proyecto que valorará, los objetivos alcanzados tanto por el grupo como individualmente, los resultados obtenidos y la presentación.

La nota de esta parte se calculará según la fórmula:

Nota Prácticas = 0.2 Lab0 + 0.4 Lab1 + 0.4 Lab2

Recuperación (prácticas). La recuperación de esta parte consistirá en la entrega del material no entregado antes, pero con un factor de penalización multiplicativo de 0.8.

Opcional (prácticas). Lab3

BLOQUE 2

Proyecto en grupos de 3 personas que será el eje central de la segunda mitad del curso. Se aplicará ABP (aprendizaje basado en proyectos). Una parte de la nota vendrá dada por el resto de integrantes del grupo y por el resto de la clase.

Recuperación. Si el alumno desea recuperar puede presentarse a un examen final especial para esta parte.

- Evaluación final (evaluación continuada)

La Nota Final de la asignatura en evaluación continuada se obtiene combinando la evaluación de estas actividades de la siguiente forma:

Nota Final = 0.5 (0.25 Nota Teoría Bloque 1 + 0.35 Nota Problemas Bloque 1 + 0.4 Nota Prácticas) + 0.5 Bloque 2

EVALUACIÓN ÚNICA.

En caso de que se quiera optar por Evaluación única se debe entregar y presentar de manera presencial antes de los exámenes finales, o el mismo día del examen, el material relacionado con las prácticas. La nota de teoría y problemas saldrá de los exámenes. También habrá opción de obtener notas extra sólo de los retos de problemas.

Quien quiera optar por este tipo de evaluación debe pedirlo con anticipación, al menos una semana antes del examen final (2º parcial).

- Evaluación final (evaluación única)

La Nota Final en evaluación única de la asignatura se obtiene combinando la evaluación de estas actividades de la siguiente forma:

Nota Final = 0.15 Nota Teoría Bloque 1 + 0.15 Nota Teoría Bloque 2 + 0.15 Nota Problemas Bloque 1 + 0.15 Nota Problemas Bloque 2 + 0.4 Nota Prácticas

Esta modalidad de evaluación tiene opción de recuperación si se ha presentado el material de prácticas antes del examen de recuperación y se ha realizado el examen final previo (2º parcial).

Evaluación final

La nota final que aparecerá en el expediente salvo casos particulares de copia y plagios o "No evaluable" será el resultado de aplicar la fórmula Nota final, también por los casos de suspenso.

Las matrículas de honor (MH) se darán a las personas con mejor nota que superen el 9, ordenadas por orden de llegada a esa nota y se darán tantas como se puedan dar por la ratio de matriculados.

Los alumnos que no participen en ninguno de los distintos elementos evaluables (test, retos, exámenes, prácticas) recibirán una nota de "No Evaluable".

Condiciones:

Si el alumno se presenta a un examen parcial o si se presenta a una sesión de control de prácticas, ya no podrá ser evaluado como "No evaluable" en caso de que no se presente a las otras evaluaciones, sino que se le calculará la nota final a partir de aquellas evaluaciones continuadas a que se haya presentado.

Aclaraciones:

5.00 es la nota para aprobar. 4.99 o inferior es suspendido.

En el caso de los estudiantes repetidores, las prácticas del año anterior, si se mantiene la temática, se pueden volver a presentar. Esto significa no una convalidación directa, sino que se han de volver a defender en una única entrevista con el profesor de prácticas. El resto de actividades de evaluación (teoría y problemas) tienen que volver a evaluar de la manera establecida.

Las fechas de evaluación continua y entrega de trabajos se publicarán en la página web de la asignatura o en

Caronte y pueden estar sujetos a cambios de programación por motivos de adaptación a posibles incidencias; siempre se informará en la página web de la asignatura o en Caronte sobre estos cambios, ya que se entiende que la página web de la asignatura o Caronte son los mecanismos habituales de intercambio de información entre profesor y estudiantes.

Para cada actividad de evaluación, se indicará un lugar, fecha y hora de revisión en la que el estudiante podrá revisar la actividad con el profesor. En este contexto, se podrán hacer reclamaciones sobre la nota de la actividad, que serán evaluadas por el profesorado responsable de la asignatura. Si el estudiante no se presenta en esta revisión, no se revisará posteriormente esta actividad.

Sin perjuicio deotrasmedidas disciplinarias que se estimen oportunas, y de acuerdo con la normativa académica vigente, las irregularidades cometidas por un estudiante que puedan conducir a una variación de la calificación se calificarán con un cero (0). Las actividades de evaluación calificadas de esta forma y por este procedimiento no serán recuperables. Si es necesario superar cualquiera de estas actividades de evaluación para aprobar la asignatura, esta asignatura quedará suspendida directamente, sin oportunidad de recuperarla en el mismo curso. Estas irregularidades incluyen, entre otros:

- la copia total o parcial de una práctica, informe, o cualquier otra actividad de evaluación;
- dejar copiar;
- presentar un trabajo de grupo no hecho íntegramente por los miembros del grupo;
- presentar como propios materiales elaborados por un tercero, aunque sean traducciones o adaptaciones, y en general trabajos con elementos no originales y exclusivos del estudiante;
- tener dispositivos de comunicación (como teléfonos móviles, smart watches, etc.) accesibles durante las pruebas de evaluación teórico-prácticas individuales (exámenes).

La nota numérica del expediente será el valor menor entre 3.0 y la media ponderada de las notas en caso de que el estudiante haya cometido irregularidades en un acto de evaluación (y por tanto no será posible el aprobado por compensación).

En resumen: copiar, dejar copiar o plagiar en cualquiera de las actividades de evaluación equivale a un SUSPENSO con nota inferior a 3.5.

Bibliografía

Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing (3rd Edition), Prentice Hall 2007. Simon J.D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012.(http://www.computervisionmodels.com/)

David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach (2nd Edition), Prentice Hall 2011. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer (Texts in computer Science) 2011. (http://szeliski.org/Book/)

lan Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016. (http://www.deeplearningbook.org)

Aurélien Géron, Hands-On Machine Learning with Scikit-Learn & TensorFlow, O'Reilly, 2017. Joan Serrat, Llibre d'apunts de Processament d'imatges, 2006. (libro)

Cursos similares y complementarios online

Curso online (MOOC Coursera): Image and video processing: From Mars to Hollywood with a stop at the hospital. (https://www.coursera.org/course/images)

Curso online (MOOC Coursera): Detección de objetos (UAB).

(https://www.coursera.org/learn/deteccion-objetos)

Curso online (MOOC Coursera): Fundamentos del Procesamiento de Vídeo e Imagen Digital.

(https://www.coursera.org/course/digital)

Curso online (MOOC Coursera): Clasificación de imágenes: ¿cómo reconocer el contenido de una imagen? (UAB). (https://www.coursera.org/learn/clasificacion-imagenes)

Curso online (MOOC Edx): Introducción a la visión por computador: desarrollo de aplicaciones con OpenCV. (https://www.edx.org/course/introduccion-la-vision-por-computador-uc3mx-isa-1x)

Curso online (MOOC Udacity): Computational Photography.(https://eu.udacity.com/course/computational-photography--ud955)

Curso online (MOOC Coursera): Machine Learning. (https://es.coursera.org/learn/machine-learning)

Software

MatLab

Python

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(PAUL) Prácticas de aula	441	Español	segundo cuatrimestre	manaña-mixto
(PAUL) Prácticas de aula	442	Español	segundo cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	441	Catalán/Español	segundo cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	442	Catalán/Español	segundo cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	443	Catalán/Español	segundo cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	444	Catalán/Español	segundo cuatrimestre	tarde
(TE) Teoría	440	Español	segundo cuatrimestre	manaña-mixto

