

Probabilidad

Código: 104847 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
2503852 Estadística Aplicada	FB	1

Contacto

Nombre: Maria Merce Farre Cervello Correo electrónico: merce.farre@uab.cat

Prerrequisitos

Cálculo 1 e Introducción a la Probabilidad.

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Objetivos y contextualización

La Probabilidad es una rama de la Matemática que tiene múltiples APLICACIONES en prácticamente todas las á

Es también el lenguaje de la estadística inferencial. Esto la hace una de las materias fundamentales del Grado d

En este segundo curso se pretende profundizar en algunos de los temas iniciados en la asignatura de Introducc

presentar nuevos temas como son la simulación de variables aleatorias y las cadenas de Markov.

Resultados de aprendizaje

- 1. KM10 (Conocimiento) Describir las características de las funciones de distribución y densidad de variables aleatorias.
- 2. SM09 (Habilidad) Analizar datos mediante diferentes técnicas de inferencia utilizando software estadístico.

Contenido

- 1. Generación de variables aleatorias a partir de valores aleatorios con ley uniforme.
- 2. Vectores aleatorios:
 - Esperanza de una función de un vector aleatorio. Covarianza i correlación.
 - Variables aleatorias independientes.
 - Esperanza i varianza condicionales.
 - Cálculos en el caso de los vectores aleatorion discretos.
- 3. Momentos de una variable aleatoria i función generatriz de momentos. Propiedades i aplicaciones.
- 4. Convergencia de una sucesión de variables aleatorias: casi-segura, en probabilidad y en distribución. Relaciones i propiedades.
- 5. Las Leyes de los Grandes Números y el Teorema Central del Límite. Aplicaciones.
- 6. Introducción a los procesos aleatorios: Cadenas de Markov con espacio de estdos finito. La función generatriz de probabilidades.

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Clases de problemas	18	0,72	
Clases de teoría	26	1,04	
Tipo: Supervisadas			
Clases de prácticas	8	0,32	
Tipo: Autónomas			
Estudio personal	82	3,28	

Habrá tres tipos de activitatats presenciales: clases de teoría, clases de problemas y clases de prácticas.

En las clases de teoría se desarrollarán los conceptos y resultados que f Se editará una colección de listas de problemas para el trabajo en clase Las prácticas serán en las aulas de informática y se usará software espe

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Evaluación continuada	100%	12	0,48	KM10, SM09
Examen de recuperación	80%	4	0,16	KM10, SM09

La evaluación continua constará de dos exámenes parciales (teoría y problemas) con un peso respectivo del 35% el primero (P1) y del 45% el segundo (P2), y la evaluación de las prácticas de aula o con ordenador (Pr) que representará el 20% de la nota final.

 $NF = 0.35 \cdot P1 + 0.45 \cdot P2 + 0.2 \cdot Pr$

En la evaluación de las prácticas, sean de aula o con ordenador, se tendrán en cuenta las entregas de tareas programadas y la realización de controles.

La parte recuperable en el examen final será sólo la correspondiente a los exámenes parciales.

Los exámenes parciales son eliminatorios. Para aprobar la asignatura es necesario tener un mínimo de 3,5 en la media ponderada de los parciales (o la recuperación) y en la nota media de la parte práctica, además de un mínimo de 5 en NF.

Evaluación única

La evaluación única será una prueba de síntesis de las competencias de ambos parciales, en base a:

- (1) Un examen con cuestiones de teoría y problemas (peso: 80%).
- (2) Una prueba de prácticas delante del ordenador (peso: 10%).
- (3) La entrega de las tareas programadas que se indiquen, con la posibilidad de que el profesorado pida que el є

Bibliografía

- X. Bardina. Càlcul de probabilitats. Materials UAB, 139.
- M.H. de Groot. *Probabilidad y estadística*. Addison-Wesley Iberoamericana.
- W. Mendenhall et al. Estadísitica Matemática con aplicaciones. Grupo editorial Iberoamérica.
- K.L. chung. Teoría elemental de la probabilidad y los procesos estocásticos. Ed. Reverté.
- S.M. Ross. A First course in probability. Ed. MacMillan.

Software

Usaremos el programario estadístico R.

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(PAUL) Prácticas de aula	1	Catalán	segundo cuatrimestre	manaña-mixto
(PLAB) Prácticas de laboratorio	1	Catalán	segundo cuatrimestre	tarde
(PLAB) Prácticas de laboratorio	2	Catalán	segundo cuatrimestre	tarde
(TE) Teoría	1	Catalán	segundo cuatrimestre	tarde

