UAB Universitat Autònoma de Barcelona

Molecular Bases of Signal Transduction and Cancer

2024/2025

Code: 42893 ECTS Credits: 9

Degree	Туре	Year
4313794 Biochemistry, Molecular Biology and Biomedicine	OT	0

Contact

Name: Victor Jose Yuste Mateos Email: victor.yuste@uab.cat

Teachers

Nestor Gomez Trias

Jose Miguel Lizcano De Vega

Jose Manuel Lopez Blanco

Victor Jose Yuste Mateos

Jose Ramon Bayascas Ramirez

Asier Gonzalez Sevine

Anna Bassols Serra

You can view this information at the <u>end</u> of this document.

Prerequisites

This is an advanced course for graduate students in in Biology, Biotechnology, Biochemistry, Biomedicine, G enetics, Microbiology, as well as graduates in Medicine and Veterinary.

A comprehensive understanding of Molecular Cell Biology is highly recommended

Specific interest in the subject. Commitment active and dynamic students

High level of English is mandatory (Understanding, spoken writing).

Objectives and Contextualisation

Providing advanced training on the molecular mechanisms involved in signal transduction pathways and in the control of cell proliferation, and how these mechanisms are altered in the cancer cell.

Reviewing and updating key concepts of the field

Defining our current knowledge on the field, as well as identifying critical issues to be investigated.

Competences

- Analyse and correctly interpret the molecular mechanisms operating in living beings and identify their applications.
- Analyse and explain normal morphology and physiological processes and their alterations at the molecular level using the scientific method.
- Develop critical reasoning within the subject area and in relation to the scientific or business context.
- Identify and propose scientific solutions to problems in molecular-level biological research and show understanding of the biochemical complexity of living beings.
- Integrate contents in biochemistry, molecular biology, biotechnology and biomedicine from a molecular perspective.
- Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
- Use and manage bibliography and IT resources related to biochemistry, molecular biology or biomedicine.
- Use scientific terminology to account for research results and present these orally and in writing.

Learning Outcomes

- 1. Describe, in molecular terms, the mechanisms involved in signal transduction and its alteration in cancer.
- 2. Develop critical reasoning within the subject area and in relation to the scientific or business context.
- 3. Discuss cases of molecular interactions that can trigger physiological reactions.
- 4. Distinguish the mechanisms of action of antitumour drugs.
- 5. Explain how the deregulation of normal processes in a tissue (angiogenesis, metabolism) affects tumour progression and degree of malignancy.
- 6. Explain the importance of tumoral stem cells in the process of tumoral progression and the relation to to the processes of cell differentiation and cell death.
- 7. Explain, in molecular terms, the mechanisms that control the cell cycle and genomic integrity.
- 8. Solve problems in new or little-known situations within broader (or multidisciplinary) contexts related to the field of study.
- 9. Understand responses triggered by receptors of growth factors and antiproliferative factors.
- 10. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.
- 11. Use and manage bibliography and IT resources related to biochemistry, molecular biology or biomedicine.
- 12. Use scientific terminology to account for research results and present these orally and in writing.

Content

Introduction (Victor J. Yuste)

Apoptosis and its role in cancer tumorigenesis and resistance (Victor J. Yuste). Signal transduction in apoptosis. Necroapoptosis or programmed necrotic cell death. Senescence and its alteration in cell death. Apoptosis and cancer: importance of genome degradation in chemotherapy.

Protein kinases (Nestor Gomez). Structure, classification, regulation and its role in cancer.

MAP kinases and Protein phosphatases in cancer (Nestor Gomez). *MAP kinases function. Regulation of MAP kinases activity and subcellular localization. Phosphatases: Classification, structure and regulationInhibitors. Kinases and Phosphatases in cancer*

The PI3-kinase pathway (Jose Miguel Lizcano). The discovery of the PI3-kinase pathway. Role of the PI3-K signalling pathway on the activation of the AGC protein kinases Akt (PKB), and p70S6K.

PDK1 signaling to the AGC kinases (Jose Ramon Bayascas). The PDK1 signalling network.

mTOR signaling (Asier González) Regulation of mTORC1 by nutrients. Insights into the regulation of mTORC2.

The stromal component of tumors (Anna Bassols). *Molecular mechanisms mediating cell-cell and cell-substrate interactions. Components of the tumor stroma. How the stroma influences* tumor biology and behaviour.

The LBK1-AMPK pathway (Jose Miguel Lizcano). The signaling pathway regulated by the tumour suppressor protein kinase LKB1.

Tumor supresor genes (Jose Ramon Bayascas). Generalities. Tumor suppressor genes in cell cycle, signalling, DNA repair, DNA methylation and as microRNAs.

Cancer epigenetics (Nestor Gomez) DNA Methylation. Chromatin/Histonemodifications. Epigenetics in cancer and cell signalling.

Therapeutic strategies (Anna Bassols) Radiotherapy. Chemotherapy. Hormone therapy. Immunotherapy. Some examples of targeted therapy.

Transcriptional and translational control and cancer (Jose Manuel López)

Activities and Methodology

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Lectures	45	1.8	1, 4, 6, 7, 8, 9
Type: Supervised			
Supervised work	52.9	2.12	1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12
Type: Autonomous			
Study and bibliographic research. Search and selection of an original scientific article for its oral presentation within a limited time.	125	5	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Oral lectures and student homework and preparation of different topics that will be discussed at the classroom

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continous Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Oral criticism of a journal paper.	40%	0.9	0.04	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Oral presentation of a journal paper.	30%	0.6	0.02	1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12
Quality of the presentation format of a scientific article	30%	0.6	0.02	1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12

Evaluation will be the result of:

1.Class attendance (minimum required: 80% class attendance and 100% attendance at external seminars)

2.Active participation/intearction during classes and seminars, by adressing questions and comments.

3.Oral presentation/defense of an original research paper, published in an international scientific journal, and related to the module.

The student will not be evaluated ("Non-evaluable" mark) if misses more than 20% of the lectures, or she/he does not defend a journal scientific paper.

Important: If plagiarism is detected in any of the works submitted, the student will fail the whole module!

Retake process: To be eligible for the retake process, the student should have been previously evaluated in a set of activities equaling at least two thirds of the final score of the course or module. Thus, the student will be graded as "No Avaluable" if the weighthin of all conducted evaluation activities is less than 67% of the final score.

This module does NOT include the unique evaluation system.

Bibliography

Molecular Biology of the Cell. Alberts et al. Garland Science. (2022). 7th ed.

The Biology of Cancer. Weinberg. Garland Science. (2014). 2nd ed.

Cell Signalling.Wendell, Mayer and Pawson. Garland Science (2015) 1st ed.

Cancer Biology. King and Robins. Pearson Education. (2006) 3rd ed.

Signal Transduction in Cancer and Immunity. Edited by Lorenzo Galluzzi and Thomas S. Postler. Elsevier ScienceDirect, Cambridge, Massachusetts Academic Press, 2021. (Access from the browser www.bib.uab.cat).

Molecular Biology of Human Cancers. Edited by Wolfgang Schultz. Kluwer Academic. (2023). (Access from the browser www.bib.uab.cat).

Jourmals devoted to cancer research:

Cancer Cell

Nature Reviews Cancer

BBA Reviews on Cancer

Cancer Treatment Reviews

Nature Reviews in Drug Discovery

Cancer Discovery

Software

Slide show from different platforms such as PowerPoint or Adobe, and videos from players like VLC.

Language list

Name	Group	Language	Semester	Turn
(SEMm) Seminars (master)	1	Catalan/Spanish	annual	morning-mixed
(TEm) Theory (master)	1	Catalan/Spanish	annual	morning-mixed

