

Propiedades Físicas Avanzadas de Nanomateriales

Código: 43437 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
4314939 Nanociencia y Nanotecnología Avanzadas / Advanced Nanoscience and Nanotechnology	ОТ	0

Contacto

Nombre: Javier Rodríguez Viejo

Correo electrónico: javier.rodriguez@uab.cat

Equipo docente

Javier Rodríguez Viejo

(Externo) Alejandro Goñi

(Externo) Anna Palau

(Externo) Cristian Rodriguez Tinoco

(Externo) Irena Spasojevic

(Externo) Javier Rodríguez

(Externo) Jordi Sort

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Prerrequisitos

Concimientos de Física de Estado Sóido y ciencia de materiales.

Objetivos y contextualización

Este módulo tiene por objetivo profundizar en las propiedades físicas de materiales de baja dimensionalidad.

Competencias

- Analizar las soluciones y beneficios que aportan los productos de la nanotecnología, dentro de su especialidad, y comprender su origen a nivel fundamental
- Diseñar procesos para obtener nanomateriales con propiedades y funcionalidades predeterminadas (especialidad Nanomateriales).

- Dominar la terminología científica y desarrollar la habilidad de argumentar los resultados de la investigación en el contexto de la producción científica, para comprender e interactuar eficazmente con otros profesionales.
- Identificar las técnicas de caracterización y análisis propios de la nanotecnología y conocer sus fundamentos, dentro de su especialidad.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

Resultados de aprendizaje

- 1. Describir cualitativamente los fundamentos de la superconductividad y conocer sus aplicaciones.
- Dominar la terminología científica y desarrollar la habilidad de argumentar los resultados de la investigación en el contexto de la producción científica, para comprender e interactuar eficazmente con otros profesionales.
- 3. Identificar la emergencia de los fenómenos termoeléctricos en la escala nanométrica
- 4. Interpretar la variación de las propiedades electrónicas de los sólidos con la dimensionalidad del sistema en base a modelos avanzados de teoría de bandas.
- 5. Interpretar los fenómenos de absorción y emisión de luz, tanto interbanada e intrabanda, en nanoestructuras
- 6. Interpretar los resultados de las medidas experimentales en base a los fundamentos teóricos adquiridos.
- 7. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- 8. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- 10. Realizar cálculos sobre las propiedades físicas de los materiales en sistemas de escala nanométrica
- 11. Reconocer el concepto de transmisión en el transporte balístico y formular problemas y su resolución en el ámbito de los dispositivos de baja dimensionalidad.
- 12. Reconocer la importancia del spin en el transporte v comprender el funcionamiento de los dispositivos espintrónicos.
- 13. Reconocer los distintos métodos de caracterización y sus fundamentos en función de la propiedad física a medir.
- 14. Valorar la importancia de la escala para describir propiedades físicas avanzadas, tanto electrónicas, térmicas, ópticas, magnéticas, mecánicas y de transporte, en los materiales

Contenido

Se estudia un abanico de propiedades físicas con énfasis en las electrónicas, ópticas, mecánicas, magnéticas, s

Propiedades electrónicas y ópticas: Bandas de energía. K.p y pseudopotenciales. Propiedades ópticas de semic

Transporte: electrones y fonones. Teoría cinética. Ecuación de transporte de Boltzmann. El formalismo de Landauer: Conductancia y flujos. Aplicación a semiconductores de baja dimensión y grafeno. Efectos termoeléctricos en nanoestructuras de semiconductores.

Propiedades mecánicas: Correlación de la microestructura con las propiedades mecánicas: Efecto Hall-Petch. Nanoindentación: Método Oliver & Pharr. Efectos de tamaño. Nanoindentación en sólidos cristalinos y amorfos.

Superconductividad: Esta parte se centra en el estudio de los materiales superconductores. Describiremos las propiedades básicas de un superconductor, incluyendo el fenómeno de la resistencia cero, los efectos Meissner y Josephson, los superconductores tipo I y tipo II, y los diferentes enfoques teóricos desarrollados para entender el estado superconductor. Se revisará la importancia de la nanotecnología y su implicación en las potentes aplicaciones de los materiales superconductores.

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje	
Tipo: Dirigidas				
Clases	46	1,84	1, 4, 11, 12, 9	
Tipo: Supervisadas				
Trabajo supervisado	14	0,56	8, 9, 7	
Tipo: Autónomas				
Trabajo autónomo	77	3,08	8, 1, 4, 11, 12	

Los apuntes (o copia de trasparencies en formato pdf) se cuelgan en el Campus Virtual antes de las clases.

Lecciones: Explicación de los conceptos más importantes de cada asignatura. Las notas estarán disponibles en el campus virtual o serán distribuidas por el profesorado.

Seminarios: lectura de artículos científicos y su discusión en clase.

Actividades supervisadas: En horas específicas el profesorado estará disponible para discutir los contenidos de sus respectivas asignaturas.

Actividades de autoaprendizaje: Resolución de problemas.

Entregas: Se pueden solicitar trabajos, ya sean bibliográficos o más de desarrollo, y la resolución de problemas para consolidar los contenidos de cada asignatura.

Estudiar para los exámenes: Trabajo personal

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Entregas	40-50%	10	0,4	14, 8, 6, 10, 13, 2, 7
Examens	50-60%	3	0,12	14, 1, 3, 5, 4, 10, 11, 12, 2, 9

Exámenes finales (50-60%).

Documentos: que incluyen varias actividades tales como resolución de problemas, trabajos de minireserach y pequeños experimentos de laboratorio o simulación (40-50%).

Es posible tener la posibilidad de aumentar las notas de los exámenes de síntesis en una prueba adicional (sólo para aquellos que hayan realizado todas las evaluaciones pervias a lo largo del curso).

Bibliografía

El profesorado proporcionará referencias para libros y artículos científicos el primer día de la actividad.

Software

Se usan programas basados en windows para ayudar en la presentación y exposición del temario

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(PAULm) Prácticas de aula (máster)	1	Catalán	anual	tarde
(TEm) Teoría (máster)	1	Inglés	anual	tarde