

Investigación e Innovación

Código: 43475 Créditos ECTS: 6

2024/2025

Titulación	Tipo	Curso
4313136 Modelización para la Ciencia y la Ingeniería / Modelling for Science and Engineering	ОВ	0

Contacto

Nombre: Silvia Cuadrado Gavilan

Correo electrónico: silvia.cuadrado@uab.cat

Equipo docente

Ana Cortes Fite
Carlos Carrillo Jordan
Martin Hernan Campos Heredia
Isabel Serra Mochales

Idiomas de los grupos

Puede consultar esta información al <u>final</u> del documento.

Prerrequisitos

No hay requisitos previos específicos. Los estudiantes deben tener las habilidades matemáticas correspondientes a nivel de un grado científico o tecnológico.

Objetivos y contextualización

El objetivo de este módulo es mostrar a los estudiantes la variedad de campos en los que podrán aplicar las herramientas adquiridas durante los cursos de Máster. Esperamos que puedan usarlos como guía cuando busquen prácticas en empresas e instituciones y también cuando elijan un tema y un director para el trabajo de fin de máster. También esperamos que les ayude a encontrar una trayectoria profesional.

Competencias

- Analizar sistemas complejos de distintos campos y determinar las estructuras y parámetros básicos de su funcionamiento.
- Analizar, sintetizar, organizar y planificar proyectos de su campo de estudio.

- Aplicar la metodología de investigación, técnicas y recursos específicos para investigar en un determinado ámbito de especialización.
- Aplicar las técnicas de resolución de los modelos matemáticos y sus problemas reales de implementación.
- Extraer de un problema complejo la dificultad principal, separada de otras cuestiones de índole menor.
- Formular, analizar y validar modelos matemáticos de problemas prácticos de distintos campos.
- Innovar en la búsqueda de nuevos espacios / ámbitos en su campo de trabajo.
- Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Reconocer la dimensión humana, económica, legal y ética en el ejercicio profesional.
- Resolver problemas complejos aplicando los conocimientos adquiridos a ámbitos distintos de los originales

Resultados de aprendizaje

- 1. Analizar, sintetizar, organizar y planificar proyectos de su campo de estudio.
- 2. Aplicar la metodología de investigación, técnicas y recursos específicos para investigar en un determinado ámbito de especialización.
- 3. Comprobar la validez del modelo respecto al comportamiento del sistema real
- 4. Describir las dependencias funcionales del sistema con respecto a los distintos parámetros
- 5. Diseñar modelos matemáticos que representen el sistema y su comportamiento
- 6. Extraer de un problema complejo la dificultad principal, separada de otras cuestiones de índole menor.
- 7. Identificar los parámetros que determinan el funcionamiento de un sistema
- 8. Implementar las soluciones propuestas de forma fiable y eficiente.
- 9. Innovar en la búsqueda de nuevos espacios / ámbitos en su campo de trabajo.
- 10. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- 11. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- 12. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- 13. Reconocer la dimensión humana, económica, legal y ética en el ejercicio profesional.
- 14. Resolver modelos matemáticos de forma eficiente.
- 15. Resolver problemas complejos aplicando los conocimientos adquiridos a ámbitos distintos de los originales

Contenido

Tenemos dos tipos de actividades durante el semestre: asistir a tres mini-cursos innovadores y asistir a una serie de conferencias impartidas por personas que trabajan para empresas o investigadores que trabajan en universidades o centros de investigación.

Los cursos son los siguientes:

 Modelizar en la nube. Riesgos catastróficos y alerta temprana. Cómo modelizar peligros naturales. Del modelo a un servicio en la nube.

- Introducción a Python con fines analíticos. Conceptos básicos de Python. Datos con Python.
 Resolución de problemas con Python. Aprendizaje automático con Python.
- Aprendizaje automático. Aprendizaje automático, inteligencia artificial y ciencia de datos: del punto de vista determinista al estocástico. Técnicas supervisadas y no supervisadas: desde árboles hasta bosques aleatorios. Introducción a las redes neuronales y desafíos matemáticos: evaluación del desempeño. Curvas ROC y validación cruzada.

Invitaremos a especialistas en los campos de modelización de sistemas complejos, modelización para la ingeniería, modelización matemática y ciencia de datos. Entre otros tendremos charlas de personas procedentes de:

- IIIA, Institut d'Intel·ligència Artificial, https://www.iiia.csic.es
- CRM, Centre de Recerca Matemàtica, http://www.crm.cat
- Accenture, https://www.accenture.com
- DSBlab, Dynamical Systems Biology lab (UPF), https://www.upf.edu/web/dsb
- Meteosim, https://www.meteosim.com

Actividades formativas y Metodología

Título	Horas	ECTS	Resultados de aprendizaje
Tipo: Dirigidas			
Asistencia a las charlas	16	0,64	1, 2, 3, 12, 4, 5, 7, 8, 10, 6, 9, 13, 15, 14, 11
Asisténcia a los cursillos	22	0,88	1, 2, 3, 12, 4, 5, 7, 8, 10, 6, 9, 13, 15, 14, 11

La metodología de los tres cursos se basa en clases magistrales que consisten en la presentación de la teoría, ejemplos y estudio de casos concretos.

En relación con las conferencias, se anunciarán previamente en el campus virtual del módulo Investigación e Innovación. Allí los estudiantes encontrarán el título de la charla, el nombre del conferenciante, un breve resumen y enlaces de interés.

Nota: se reservarán 15 minutos de una clase dentro del calendario establecido por el centro o por la titulación para que el alumnado rellene las encuestas de evaluación de la actuación del profesorado y de evaluación de la asignatura o módulo.

Evaluación

Actividades de evaluación continuada

Título	Peso	Horas	ECTS	Resultados de aprendizaje
Asistencia a las conferencias	10%	16	0,64	3, 12, 4, 7, 10, 11
Hacer un informe sobre Machine Learnig	30%	32	1,28	1, 2, 3, 12, 4, 5, 7, 8, 10, 6, 9, 13, 15, 14, 11
Hacer un informe sobre Python for analitical	30%	32	1,28	1, 2, 3, 12, 4, 5, 7, 8, 10, 6, 9, 13, 15,

purposes				14, 11
Hacer un informe sobre Riesgos Naturales	30%	32	1,28	3, 12, 4, 7, 10, 11

Los estudiantes deben presentar tres proyectos correspondientes a los tres cursos impartidos, en grupos de dos o tres personas. Cada uno de estos proyectos cuenta con el 30% de la calificación. La asistencia a las charlas, que es obligatoria, contribuye en un 10% a la nota final.

Bibliografía

- Bibliography and links of interest
- https://www.python.org/about/gettingstarted/
- https://www.learnpython.org/
- https://learntocodewith.me/posts/python-for-data-science
- Pitts W McCulloch W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 1943.
- L. Breiman, J.H. Friedman, R.A. Olshen and C.J Stone. Classification and Regression Trees. Wadsworth, Belmont, Ca, 1988.
- Friedman, Jerome H. Data Mining and Statistics: What's the connection?". Computing Science and Statistics. 29. 1998.
- B Ripley. Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge. 2002.
- T Hastie, R Tibshirani, J Friedman. The Elements of Statistical Learning. Data Mining, Inference and Prediction, Springer, New York. 2009.
- Bishop, C. M. Pattern Recognition and Machine Learning, Springer, ISBN 978-0-387-31073-2. 2006.
- Ethem Alpaydin. Introduction to Machine Learning (Fourth ed.). MIT. 2020.

Software

El software se detallará en cada uno de los cursos impartidos.

Lista de idiomas

Nombre	Grupo	Idioma	Semestre	Turno
(TEm) Teoría (máster)	1	Inglés	primer cuatrimestre	tarde