

Programming Techniques

Code: 43851 ECTS Credits: 6

2024/2025

Degree	Туре	Year
4315985 Geoinformation	ОТ	0

Contact

Name: Wladimir Szczerban Llatas
Email: wladimir.szczerban@uab.cat

Teachers

Wladimir Szczerban Llatas

Carles Ros Visus

Teaching groups languages

You can view this information at the <u>end</u> of this document.

Prerequisites

There are no prerequisites. However it is advisable that students have basic knowledge on information technologies.

Objectives and Contextualisation

Programming techniques are the field of computer science dedicated to software applications development. Some of the subjects it encompasses are object-oriented programming, functional programming, recursive programming and web applications programming, among others. This course is focused on object-oriented programming and web applications programming.

Competences

- Apply programming methodologies and procedures, and those for implementation of geospatial applications for different types of platforms (desktop, web, mobile), using different programming paradigms and environments.
- Continue the learning process, to a large extent autonomously.
- Develop imaginative, creative and innovative ideas in projects for geospatial information systems, services, products or applications.
- Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.

Learning Outcomes

- 1. Continue the learning process, to a large extent autonomously.
- 2. Develop imaginative, creative and innovative ideas in projects for geospatial information systems, services, products or applications.
- 3. Know and apply the different programming paradigms and environments.
- 4. Programme applications using integrated development environments.
- 5. Use acquired knowledge as a basis for originality in the application of ideas, often in a research context.

Content	
Object-oriented programming	
1. Introduction to the Python language.	
Declaration of variables and constants.	
comments	
Data type.	
Declaration of variables.	
Arithmetic, comparison and assignment operators.	
2. Conditional control structures.	
3. Iterative control structures.	
4. Functions.	
5. Lists.	
6. Object-oriented programming (OOP).	
Concepts of object, class, attribute and method.	
Introduction to Object Oriented Programming with Python.	
7. Manipulation of objects.	
8. Files.	

Web programming

1. Introduction to web and HTML programming.

Client-server architecture.

Basic elements of HTML language.

2. Cascading Style Sheets (CSS).

How to insert CSS.

Types of selectors.

Tit	le	Hours	ECTS	Learning Outcomes
Act	ivities and Methodology			
	Data flow.			
	Introduction.			
5. M	odel-View-Controller paradigm.			
	Database access example.			
	Form processing example.			
	Introduction.			
4. Ja	avaScript on the server (NodeJs).			
	Asynchronous JavaScript and XML (AJAX).			
	JavaScript Object Notation (JSON).			
	Document Object Model.			
	Browser Object Model.			
	Functions			
	Predefined objects.			
	Control statements.			
	Operators.			
	Variables.			
	Data types.			
	How to insert JavaScript.			
	Object-oriented programming.			
3. Já	avaScript.			
	Colours in HTML.			
	Positioning.			
	Box model.			

Ac

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Theoretical and practical lectures	36	1.44	1, 3, 4
Type: Supervised			
Semester project	15	0.6	1, 2, 3, 4

Personal work	69	2.76	1, 2, 3, 4

Learning is achieved by means of three types of activities:

Directed activities: Directed activities are theoretical and practical lectures in a computer lab. They include solving case studies and practical exercises, using as the main method a problem based learning approach. Lectures serve to systematize all the content, to present the state of the art of the different subjects, to provide methods and techniques for specific tasks, and to sum up the knowledge to learn. Lectures organize also the autonomous and complementary work done by the students.

Supervised activities: Supervised activities are focused on the execution of a semester project, consisting of a real case study, carried out through workshop hours, autonomous work and tutorials. This semester project allows to apply together all the knowledge and technical skills learnt in all the courses of the semester. The semester project is a milestone for the students and the actual demonstration that they had achieved the learning goals of all the courses of the semester. It is also the main evidence for evaluation as students should have to submit at the end of the semester a report that summarizes the whole project and do an oral presentation.

Autonomous activities: Autonomous work of the students includes personal readings (papers, manuals, relevant reports, etc.), data and documentation search, complementary exercises and the personal development of the semester project.

The activities that could not be done onsite will be adapted to an online format made available through the UAB's virtual tools. Exercises, projects and lectures will be carried out using virtual tools such as tutorials, videos, Teams sessions, etc. Lecturers will ensure that students are able to access these virtual tools, or will offer them feasible alternatives.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continous Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Oral presentations	25	6	0.24	1, 3, 4, 5
Practical exercises	30	9	0.36	1, 2, 3, 4
Report submissions	45	15	0.6	1, 3, 4

In the event that assessment activities cannot be taken onsite, they will be adapted to an online format made available through the UAB's virtual tools (original weighting will be maintained). Homework, activities and class participation will be carried out through forums, wikis and/or discussion on Teams, etc. Lecturers will ensure that students are able to access these virtual tools, or will offer them feasible alternatives.

CONTINUOUS EVALUATION. This subject/module does not incorporate single assessment.

a) Evaluation procedure and activities:

Evaluation of the course is based mostly on the semester project, that comprises two evaluation activities. The elaboration and submission of a synthesis report and the oral presentation of the project done. Given the technical content of the course, the weight assigned to the project report is 45% of the total course grading, assuming that it is the most appropriate means to explain all the technical details of the project, and a weight of 25% at the oral presentation. The course assessment is completed with the evaluation of the practical exercises done along the course, that account for another 30% of the total course grading.

Except when expressly noticed, all the evaluation activities (report and oral presentation of the semester project, as well as practical exercises) have to carried out individually.

Time assigned to each evaluation activity includes the time spent in making all the material evidences for evaluating each activity (e.g., writing of the report, preparing the presentation slides, etc.).

b) Evaluation schedule:

2nd semester project report: Making during all the semester. Submission at the end of semester, on April 11st 2025.

 2^{nd} semester project oral presentation: Making during all the semester. Oral presentation at the end of semester, on April 25th 2025.

Course practical exercises: Making and submission weekly or biweekly along the semester.

c) Grade revision:

Once the grades obtained are published, students will have one week to apply for a grade revision by arranging an appointment with the corresponding teachers.

d) Procedure for reassessment:

 2^{nd} semester project report: It could be reassessed in the following two weeks after the submission date scheduled. Reassessment will require the submission of a new whole report in case of negative evaluation of the former report submitted.

 2^{nd} semester project oral presentation It could be reassessed in the following week after the date scheduled for the oral presentation. Reassessment will require doing again the oral presentation in case of negative evaluation of the former presentation done.

Course practical exercises: Can not be reassessed.

To have right to a reassessment the student will have to have been previously evaluated in a set of activities that account for at least two thirds of the total course grading. Therefore he or she will have to have been evaluated of the 1st semester project report (50%) and of the 1st semester project oral presentation (20%) in the dates scheduled.

The right to a reassessment will only be granted to students that, having not passed the course (e.g., having a total course grade below 5 over 10), had obtained at least a total course grade above 3,5 over 10.

e) Conditions for a 'Not assessable' grade:

Students will receive the grade 'Not assessable' instead of 'Fail' if they had not submitted neither the2nd semester project reportnordone the 2nd semester project oral presentation. Students will obtain a Not assessed/Not submitted course grade unless they have submitted more than 1/3 of the assessment items.

f) UAB regulations on plagiarism and other irregularities in the assessment process:

In the event of a student committing any irregularity that may lead to a significant variation in the grade awarded to an assessment activity, the student will be given a zero for this activity, regardless of any disciplinary process that may take place. In the event of several irregularities in assessment activities of the same subject, the student will be given a zero as the final grade for this subject..

Assessment acitivities with a zero grade because of irregularities can not be reassessed.

On carrying out each evaluation activity, lecturers will inform students of the procedures to be followed for reviewing all grades awarded, and the date on which such a review will take place.

Bibliography

Sikora, Zbigniew M, Java: practical guide for programmers. Amsterdam, Boston: Morgan Kaufmann, 2003.

Terry Felke-Morris, Web development and design foundations with HTML5. Addison-Wesley, 2012.

Medinets, David, PHP3 programing browser-based applications. McGraw-Hill, cop. 2000.

During the course web reference resources will be given and its use explained.

Software

Spyder

XAMPP

Nodejs

Visual Studio Code

Language list

Name	Group	Language	Semester	Turn
(PLABm) Practical laboratories (master)	1	Spanish	second semester	morning-mixed
(TEm) Theory (master)	1	Spanish	second semester	afternoon