

Genetics of Cancer and Oncology

Code: 101882
ECTS Credits: 6

2025/2026

Degree	Type	Year
Biomedical Sciences	OT	4

Contact

Name: Gemma Armengol Rosell

Email: gemma.armengol@uab.cat

Teachers

Jordi Surralles Calonge

Jordi Camps Polo

Alba Hernandez Bonilla

Teaching groups languages

You can view this information at the [end](#) of this document.

Prerequisites

To have basic knowledge on Human Genetics.

In order to be able to attend the laboratory classes, it is necessary that the student shows that he/she has passed the biosafety tests that can be found in Campus Virtual. He/she must know and accept laboratory standards of practice from Faculty of Biosciences.

Objectives and Contextualisation

The objectives of the course are to show how the acquisition of somatic mutations contribute to tumor growth and how genetic variations contribute to inherited susceptibility to cancer. Some issues such as genomic instability and the types of functional changes that result in tumor growth are addressed. We also discuss the genetic and epigenetic changes in cancer , from the chromosomal scale up to small mutations, with examples of the most common cancers

Competences

- Act with ethical responsibility and respect for fundamental rights and duties, diversity and democratic values.

- Apply knowledge acquired to the planning and implementation of research, development and innovation projects in a biomedical research laboratory, a clinical department laboratory or the biomedical industry.
- Display knowledge of the concepts and language of biomedical sciences in order to follow biomedical literature correctly.
- Display theoretical and practical knowledge of the major molecular and cellular bases of human and animal pathologies.
- Make changes to methods and processes in the area of knowledge in order to provide innovative responses to society's needs and demands.
- Read and critically analyse original and review papers on biomedical issues and assess and choose the appropriate methodological descriptions for biomedical laboratory research work.
- Students must be capable of applying their knowledge to their work or vocation in a professional way and they should have building arguments and problem resolution skills within their area of study.
- Students must be capable of collecting and interpreting relevant data (usually within their area of study) in order to make statements that reflect social, scientific or ethical relevant issues.
- Students must be capable of communicating information, ideas, problems and solutions to both specialised and non-specialised audiences.
- Students must develop the necessary learning skills to undertake further training with a high degree of autonomy.
- Students must have and understand knowledge of an area of study built on the basis of general secondary education, and while it relies on some advanced textbooks it also includes some aspects coming from the forefront of its field of study.
- Take account of social, economic and environmental impacts when operating within one's own area of knowledge.
- Work as part of a group with members of other professions, understanding their viewpoint and establishing a constructive collaboration.

Learning Outcomes

1. Act with ethical responsibility and respect for fundamental rights and duties, diversity and democratic values.
2. Correctly use the terminology of medicine and its text and reference books
3. Identify the principal pathologies that become more prevalent with ageing.
4. Make changes to methods and processes in the area of knowledge in order to provide innovative responses to society's needs and demands.
5. Propose research projects that are relevant to human pathology.
6. Students must be capable of applying their knowledge to their work or vocation in a professional way and they should have building arguments and problem resolution skills within their area of study.
7. Students must be capable of collecting and interpreting relevant data (usually within their area of study) in order to make statements that reflect social, scientific or ethical relevant issues.
8. Students must be capable of communicating information, ideas, problems and solutions to both specialised and non-specialised audiences.
9. Students must develop the necessary learning skills to undertake further training with a high degree of autonomy.
10. Students must have and understand knowledge of an area of study built on the basis of general secondary education, and while it relies on some advanced textbooks it also includes some aspects coming from the forefront of its field of study.
11. Take account of social, economic and environmental impacts when operating within one's own area of knowledge.
12. Understand scientific texts on pathology of the different systems and write review papers on these.
13. Understand the molecular and cellular bases of cancer, the causes of its development and the bases for its treatment.
14. Work as part of a group with members of other professions, understanding their viewpoint and establishing a constructive collaboration.

Content

1. What is cancer? Types of tumors. Benign and malignant tumors. Incidence and survival.
2. Characteristics of tumor cells. Cell signalling. Cell cycle control. Angiogenesis. Inactivation of senescence. Apoptosis. Invasiveness and metastasis. Tumor microenvironment. Therapeutic targets.
3. Genes and cancer. Epigenetics and cancer. Methylation. Modification of histones. miRNAs. Potential clinical use.
4. Sequencing the cancer genome. Driver and passenger mutations. Number of mutations required. Circos Plots. Pathways with more alterations. Mutations associated with metastasis. Gene expression profiles.
5. Genetic alterations in leukemia and lymphoma.
6. Genetic alterations of the most frequent carcinomas. Lung cancer, colon cancer, breast cancer, bladder cancer, prostate cancer, kidney cancer.
7. New genetic strategies applied to the diagnosis and treatment of cancer. Tumor heterogeneity. Mutational signatures. Screening in colon cancer. Biomarkers
8. Carcinogenesis. Embryonic stem cells (SCS) and cancer stem cells (CSCS). The cancer stem cell hypothesis. Implications in cancer therapy. Implications in the generation of artificial stem cells. Analysis techniques of the CSC and the tumor phenotype.
9. Environmental carcinogenesis. Molecular mechanisms of environmental carcinogenesis. Human carcinogens. Transplacental carcinogens.
10. Familial cancer, DNA repair and cancer predisposition syndromes
11. Genetic strategies to identify cancer susceptibility genes
12. New treatments for tumors with mutations in genes of tumor predisposition. The concept of synthetic lethality

Activities and Methodology

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Laboratory exercises	10	0.4	1, 13, 12, 4, 10, 8, 6, 7, 14, 2
Seminars	15	0.6	1, 11, 13, 12, 3, 4, 5, 10, 9, 8, 6, 7, 14, 2
Theoretical sessions	25	1	1, 11, 13, 3, 4, 10, 9, 8, 6, 7
Type: Supervised			
Tutorials	2	0.08	1, 11, 4, 10, 9, 6, 7, 14
Type: Autonomous			
Personal study	60	2.4	13, 12, 3, 10, 9, 6, 7, 2
Preparation of seminar activities	35	1.4	1, 11, 13, 12, 3, 4, 5, 10, 9, 8, 6, 7, 14, 2

The teaching methodology will benefit from the tools provided by the Virtual Campus of the UAB. To achieve the objectives of the subject, three types of learning activities are proposed: theoretical sessions, seminars with half of the group and laboratory practices also with half of the group.

Theoretical sessions: The students acquire their own knowledge of the subject attending the classes of theory, complementing them with the personal study. These classes are designed as lectures given by the teaching staff but also the active participation of students is encouraged to establish discussions or collective reflections. In the classes, digital presentations are used to help the understanding of the contents, which are available on the UAB virtual campus.

Seminars: The knowledge developed in the theory classes and worked in the personal study is applied to the resolution of practical cases, attendance at conferences and the discussion of original research papers published in international journals. Practical cases arise in the form of problems or questions, which are worked on small groups. These type of methodology allow us to reinforce and deepen the topics studied in the theoretical sessions.

Laboratory exercises: The practical laboratory classes are essential for the learning of any knowledge in the field of experimental sciences. In the case of the course of Cancer Genetics, the practical classes have as objective to show to the students some techniques of tumor genome analysis. The learning and understanding of these techniques will allow the acquisition of skills that will be essential for the professional development of students. The attendance to the laboratory sessions is compulsory.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continous Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Practical excercises	10%	0	0	1, 11, 13, 12, 3, 4, 5, 10, 9, 8, 6, 7, 14, 2
Seminar reports	30%	0	0	1, 11, 13, 12, 3, 4, 5, 10, 9, 8, 6, 7, 14, 2
Written test I	30%	1.5	0.06	13, 3, 10, 9, 8, 6, 7, 2
Written test II	30%	1.5	0.06	13, 3, 10, 9, 8, 6, 7, 2

- a) Two written tests: each test is 30% of the final mark. The minimum mark to pass the subject will be 5 in each test.
- b) Reports derived from the activities carried out in the seminars: 30% of the final mark. The works can be problems, interpretation of data, bibliographical research, etc. to be proposed by each responsible professor.
- c) Questions or report on laboratory practices: 10% of the final mark. The attendance to the laboratory sessions is compulsory.

To be able to pass the subject, the minimum mark is 5. At the end of the course there will be a remedial test for those students who have failed or not attended any of the two written tests. To be eligible for the retake process, the student should have been previously evaluated in a set of activities equaling at least two thirds of the final score of the course. The student will be graded as "No Available" if the weight of all conducted evaluation activities is less than 67% of the final score.

Unique assessment

Students enrolled in the single assessment will have to take the two written tests and hand in the assignments from works performed in the classes on a single date, only for those that are not in group (under the same conditions as students with continuous assessment). The works performed in the classes that are in group will be assessed on the same day that the students with continuous assessment will be assessed. Laboratory classes are of mandatory attendance and will be assessed on the same day that students with continuous assessment. The percentage of each assessment activity will be the same as in continuous assessment. The single assessment test will coincide with the same date fixed in the calendar for the last continuous assessment test and the same recovery system will be applied as for the continuous assessment.

Use of artificial intelligence

In this subject, the use of Artificial Intelligence (AI) technologies is allowed as an integral part of the development of the work, provided that the final result reflects a significant contribution of the student in the analysis and personal reflection. The student must clearly identify which parts have been generated with this technology, specify the tools used and include a critical reflection on how these have influenced the process and the final result of the activity. The lack of transparency in the use of AI will be considered a lack of academic honesty and may lead to a penalty in the grade of the activity, or greater sanctions in serious cases.

Bibliography

The molecular basis of cancer. Edited by: J. Mendelsohn, P.M. Howley, M.A. Israel, J.W. Gray, C.B. Thompson. Philadelphia: Saunders, an imprint of Elsevier Inc. 2015. 4th edition.

<https://www.sciencedirect.com/science/book/9781455740666>

Principles of cancer genetics. Edited by: F. Bunz. Baltimore: Springer. 2022. 3rd edition.

https://bibcercador.uab.cat/permalink/34CSUC_UAB/15r2rl8/cdi_askewsholts_vlebooks_9783030993870

Textbook of cancer epidemiology. Edited by: Hans-Olov Adami, David Hunter, and Dimitrios Trichopoulos. Oxford University Press. 2018. 3rd editi

Review articles that will be available on virtual campus

Software

R, a free statistical software package, will be used

Groups and Languages

Please note that this information is provisional until 30 November 2025. You can check it through this [link](#). To consult the language you will need to enter the CODE of the subject.

Name	Group	Language	Semester	Turn
(PAUL) Classroom practices	641	Catalan/Spanish	second semester	morning-mixed
(PLAB) Practical laboratories	641	Catalan	second semester	afternoon
(PLAB) Practical laboratories	642	Catalan	second semester	afternoon

(PLAB) Practical laboratories	643	Catalan	second semester	afternoon
(TE) Theory	64	Catalan/Spanish	second semester	morning-mixed