

Genetics

Code: 101963
ECTS Credits: 6

2025/2026

Degree	Type	Year
Genetics	OB	1

Contact

Name: Antoni Barbadilla Prados

Email: antonio.barbadilla@uab.cat

Teachers

Barbara Negre De Bofarull

Teaching groups languages

You can view this information at the [end](#) of this document.

Prerequisites

- The own requirements of access to the degree.
- It is convenient that the student review the basic processes of cell division of the subject of Cellular Biology and Histology
- The foundations of probability that have been seen in the subject of Mathematics, and know the statistical distributions binomial, Poisson and normal.
- In order to attend the practical sessions it is necessary that the student justifies having passed the biosafety and safety tests that will find in the Virtual Campus and to be knowledgeable and accept the working rules of the laboratories of the Faculty of Biosciences.

Objectives and Contextualisation

The subject of Genetics is taught in the 1st year of the Degree of Genetics (2nd semester). It is the first subject with specific content of genetics, and that is why they will provide the basic foundations of the hereditary transmission, that is, how genetic information is transferred between generations in both individuals and populations. Molecular genetics is looked very briefly, since it will be treated in depth in the second course. The contents of this course include the transmission of chromosomes and genes, the development of genetic maps, the mutation of the genetic material, the inheritance of characters of continuous variation, the genetics of populations, and the genetic properties and characteristics of the model organisms.

Each class of this course wants to be a unique opportunity to meet the new and fascinating ideas of Genetics. From the very beginning we want to convey an overview of the problems and the scope of this Science. We want to motivate you, creating a contagious interest and enthusiasm, promoting critical inquiry and developing curiosity about the issues of genetics. We are fortunate that we can talk about the excitement and vitality of this

science realistically, without the need to pretend. The subject wants to be a lasting guide, a continuous reference, to which you can turn mentally over and over again.

From the point of view of learning to acquire, students are expected to understand the power of inquiring of the genetic analysis, which has opened the door to many of the great discoveries of genetics, and how this powerful methodological tool is applied in current genetics. It is also intended to acquire a historical perspective of the great milestones of genetics, from the experiments of Mendel to the sequencing of the human genome.

As a complement to face-to-face training this course has an online learning platform that implements the new and powerful learning and knowledge technologies (LKT) in the course. This resource aims to facilitate personalized work, individual discovery, integration of different sources of information, as well as enhancing originality and the development of innovative skills, all with the ultimate goal that the student acquires new perspectives for the construction and understanding of the knowledge and skills required for the training of a professional geneticist. Many of the exercises and tasks to be done during the course emphasize the multidisciplinary nature of Genetics. Among other tools, the online Portfolio of works, tasks and activities either assigned or self-created by the student, is a featured element for the monitoring and evaluation of the learning acquired by the student throughout the course.

The formative objective is to acquire a solid understanding of the bases and mechanisms of inheritance and the method of genetic analysis: to be able to explain and interpret the principles of the transmission of genetic information, to analyze genealogies and to apply it to genetic counseling, to elaborate and work with genetic maps, to understand what is and how genetic variation is measured in populations, to design and obtain relevant information from genetic experiments and to interpret the results obtained. Explanations will be contextualized historically for the student to visualize how the conceptual building of genetics has been constructed and to appreciate the importance of the current moment of this science, vibrant and full of promises and challenges.

Competences

- Act with ethical responsibility and respect for fundamental rights and duties, diversity and democratic values.
- Apply scientific method to problem solving.
- Be able to analyse and synthesize.
- Be able to communicate effectively, orally and in writing.
- Define mutation and its types, and determine the levels of genic, chromosomal and genomic damage in the hereditary material of any species, both spontaneous and induced, and evaluate the consequences.
- Describe and interpret the principles of the transmission of genetic information across generations.
- Enunciate and evaluate the biological properties and genetic characteristics of model genetic organisms.
- Measure and interpret the genetic variation in and between populations from a clinical, conservational and evolutionary perspective, and from that of the genetic improvement of animals and plants.
- Perceive the strategic, industrial and economic importance of genetics and genomics to life sciences, health and society.
- Produce and work with genetic maps.
- Reason critically.
- Take account of social, economic and environmental impacts when operating within one's own area of knowledge.
- Take sex- or gender-based inequalities into consideration when operating within one's own area of knowledge.
- Use and manage bibliographic information or computer or Internet resources in the field of study, in one's own languages and in English.

Learning Outcomes

1. Act with ethical responsibility and respect for fundamental rights and duties, diversity and democratic values.
2. Apply scientific method to problem solving.
3. Be able to analyse and synthesise.
4. Be able to communicate effectively, orally and in writing.
5. Describe and interpret the rules for transmitting ligated genes.
6. Describe the different concepts that relate genotype with phenotype.
7. Determine the genetic basis of a character from inheritance patterns.
8. Elaborate genetic maps from crossings of two and three points.
9. Enunciate and evaluate the biological properties and genetic characteristics of model genetic organisms.
10. Estimate the genetic parameters of a character from crossbreeding.
11. Explain and interpret Mendel's experiments and the derived laws of inheritance.
12. Explain that in the past genetics was used unlawfully to foster racist ideologies.
13. Explain the nature of genetic variation, its origin and maintenance in panmictic populations.
14. Identify chromosomal variants and anomalies.
15. Reason critically.
16. Synthesise, based on historical progress in genetics, a perspective of the current and future scope of this science.
17. Take account of social, economic and environmental impacts when operating within one's own area of knowledge.
18. Take sex- or gender-based inequalities into consideration when operating within one's own area of knowledge.
19. Use and manage bibliographic information or computer or Internet resources in the field of study, in one's own languages and in English.

Content

Theoretical contents*

Part I. Introduction

Topic 1: The science of genetics. Fundamental concepts. Genetic analysis. Model organisms of genetics.

Part II. Mendelism

Topic 2: Mendelian Principles. Equal segregation and independent assortment. Types of inheritance. Examples of Mendelian inheritance in humans.

Topic 3: Mitosis and meiosis. Chromosomal theory of heredity. Biological cycles.

Topic 4: Inheritance of sex. Determination of sex. Inheritance linked to sex. Inheritance influenced by sex. Inheritance limited to one sex. Compensation of dosis.

Topic 5: Analysis of genealogies and genetic counseling.

Topic 6: Extensions of the Mendelian analysis. Relations of dominance. Multiple Allelism. Lethal allele and essential gene. Penetrance and expressiveness. Genotypic interactions. Epistasis. Biochemical genetics. Hypothesis a gene-an enzyme. Test of complementation.

Part III. Recombination and genetic maps

Topic 7: Linkage, crossing-over and recombination.

Topic 8: Genetic maps. Genetic mapping: two points cross; three points cross. Cytological and nucleotide demonstration of crossing-over. Analysis of tetrads. Mitotic recombination. Genetic maps in humans.

Part IV. Quantitative inheritance and non-Mendelian inheritance

Topic 9: Quantitative inheritance. Traits controlled by several loci. Meaning of polygenic inheritance. Heritability. Metrics of heritability.

Topic 10: Non-Mendelian inheritance. Cytoplasmic inheritance: mitochondria, chloroplasts. Transposable genetic elements.

Part V. DNA and mutation

Topic 11: The double helix.

Topic 12: Mutation. Spontaneous mutation and induced mutation. Types of mutation. Repair.

Topic 13: Numerical and structural chromosomal changes. Deletions and Duplications. Inversions and their effects. Translocations. Variation in chromosome number: euploidy and aneuploidy. Aneuploidy in man. Polyploidy: self and alloploidy.

Part VI. Population genetics

Topic 14: Population genetics. The Mendelian population. Allelic and genotypic frequencies. Hardy-Weinberg equilibrium. Non-random mating. Evolutionary factors: mutation, migration, genetic drift and natural selection

Contents of the lab practices

Session 1. Introduction to the biology and morphology of *Drosophila melanogaster* (1 session) (Integrated Laboratories)

Session 2. Analysis of a mutant and assignment to its linkage group (1 session) (Integrated Laboratories)

Session 3. Elaboration of a genetic map of three markers (1 session) (Integrated Laboratories)

Session 4. Observation of chromosomes and mutations (somatic recombination, chromosomal alterations, micronuclei) (1 session) (Integrated Laboratories)

Seminars

A program of activities will be followed that will be carried out individually and/or in groups and the activities may be presented orally and/or in writing. The tasks to be carried out during the course will allow the development of the skills defined in the guide and cover the multidisciplinary nature of Genetics. Discussion topics or tasks will be raised that students must solve with the resources made available to them. Current topics and classic works of genetics (the work of Mendel and the discovery of the double helix among others) will be discussed. The works must always be accompanied by the consulted references. In the case of group work, the contribution of each person must be specified (for example, "we have all contributed equally"). The work of another cannot be presented in any way as one's own work. Any fragment of information that has not been prepared by the student, that is, that has been literally copied from external sources or from other classmates or with AI, must be explicitly indicated in the work. Students will be able to participate in the assessment of their classmates' work (peer evaluation). The assignments may be mandatory or optional and will preferably have to be uploaded in pdf format to the corresponding portfolio on the course website. Originality, argumentative ability, and selection of information sources will be mainly valued. [Program of activities](#)

Problems/quizzes and self-study applications

They will be carried out in the Moodle application of the Genetics course (<https://e-aules.uab.cat/>)

Assigned presential hours

30 hours Theory, 15 hours Seminars, 13 hours Practices

Activities and Methodology

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Laboratory practices	12	0.48	2, 5, 7, 8, 13, 14, 15, 4, 3, 19
Seminars and exercises solving	14	0.56	2, 15, 4, 19
Theory classes	30	1.2	2, 6, 5, 7, 8, 9, 11, 13, 14, 15, 4, 3, 19
Type: Supervised			
Group and individual tutorials	6	0.24	2, 6, 5, 7, 8, 9, 11, 13, 14, 15, 4, 3, 19
Preparation of materials	1	0.04	2, 15, 4, 19
Type: Autonomous			
Bibliography Search	4	0.16	15, 19
Drafting of work and preparation of tasks of the portfolio	14	0.56	2, 15, 4, 19
Readings	8	0.32	15, 19
Resolution of exercises	20	0.8	2, 15, 4, 19
Study	35	1.4	2, 15, 19

The teaching methodology includes six types of activities: theoretical classes, problem-solving, seminar sessions, practical classes, activities, and assignments delivered through the virtual classroom or the UAB campus Moodle platform.

Theoretical classes: Classes convey the basic concepts and information necessary for independent learning. Active student participation is encouraged through reciprocal questioning. In-person classes are supported with multimedia materials (PowerPoint presentations, animations, etc.) that will be available to students on the course's Moodle platform.

Problems and applications of self-learning: The formulation and resolution of Mendelian genetics problems is a very effective method for learning the basic concepts of genetics and integrating the concepts necessary for solving practical and theoretical questions. Approximately half of the time in the seminar/problem sessions will be devoted to solving and discussing problems that students have previously worked on independently (the problems can be found in the problem outline, on the exercises page of the course website, and in the Moodle application "Genetics Permanent Classroom"). Students must practice the exercises and quizzes they found in the course's virtual classroom. In another activity, students will be required to solve exercises completely and reasonably, and once corrected, they will be posted on the website. This will provide a greater number of solved exercises that other students can consult and/or compare with their previous attempt. Solving solved exercises in pairs, which can be consulted and compared, promotes individual excellence through direct comparison of student work, especially with the best class work. Active participation in problem-solving accounts for 10% of the final grade.

Seminars: Groups of 30 students maximum. Individual and group work (oral and written) will be presented, discussing current topics and classic genetics papers. Work must always be accompanied by the references consulted. In the case of group work, each student's contribution must be specified (for example, "we all contributed equally"). No one may present another's work as their own. Any information not created by the

student, that is, copied verbatim from external sources, other classmates, or created using artificial intelligence, must be explicitly stated in the work. Students will also participate in the assessment of their classmates' work (peer assessment). Work must be submitted on paper and/or electronically.

Practices: Laboratory practices in groups of 20 students. The work will be done with the species *Drosophila melanogaster* as an example of a model organism in genetics. A genetic map will be created and phenotypic and chromosomal mutants will be visualized. See the Course Content section. Students are provided with a practice script, which can be found on the virtual campus within the course materials. It is essential to carefully read the corresponding section for each session before beginning the practice to maximize the benefits. A practice assessment test will be given at the end of each session. ([Prácticas](#)).

Tutorials: Discussion and resolution of doubts/problems by the professor. They will be done individually or in small groups to be agreed between the students and the teacher. It is recommended to do at least one group tutoring before each of the exams for the resolution of doubts.

Online learning platform: Discussion and resolution of questions and problems by the instructor. These will be conducted individually or in small groups, as agreed upon by the students and the instructor.

Use of AI: In this subject, the use of Artificial Intelligence (AI) technologies is allowed as an integral part of the development of the work, provided that the final result reflects a significant contribution of the student in the analysis and personal reflection. The student must clearly identify which parts have been generated with this technology, specify the tools used and include a critical reflection on how these have influenced the process and the final result of the activity. The lack of transparency in the use of AI will be considered a lack of academic honesty and may lead to a penalty in the grade of the activity, or greater sanctions in serious cases.

Address online learning platform for genetics -> Curs Genética - 1er curs - Grau Genètica [MO73297]
<aclass="aalink coursename" href="https://e-aulas.uab.cat/2024-25/course/view.php?id=7982">Curs Genética - 1er curs - Grau Genètica [MO73297]

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continous Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Evaluation of the online portfolio of optional tasks or self-created works	Until 10% plus	0	0	1, 18, 17, 2, 15, 4, 3, 19
Final exam (individual grading)	Two part exams (individual grading)	2	0.08	1, 18, 17, 2, 6, 5, 7, 8, 9, 10, 11, 13, 14, 15, 4, 3, 19
Final exam (individual grading)	60% (25% and 35%)	4	0.16	1, 18, 17, 2, 6, 5, 7, 8, 9, 10, 11, 13, 12, 14, 15, 4, 16, 3, 19
Participation and realization of the activities programmed in the seminars	14%	0	0	1, 18, 17, 2, 12, 15, 4, 16, 3, 19
Problem solving and use of the tool Aula permanente de genètica	10%	0	0	2, 6, 5, 7, 8, 11, 13, 15, 4, 3, 19
Questionnaires for laboratory practices (individual evaluation)	16%	0	0	2, 6, 5, 7, 8, 9, 11, 13, 14, 15, 4, 3, 19

The competences of this subject will be evaluated through continuous evaluation, which includes different activities: two exams, a final 2n exam or improvement of grades, written tests, problem solving, laboratory work and participatory activity in the classroom.

The evaluation system is organized into 5 evaluation activities, each assigned a specific weight in the final grade:

Evaluation of laboratory practices: the laboratory notebook and the answers to the questionnaires at the end of each practice will be evaluated. Overall weight of 16%.

Evaluation of the resolution of problems and the use of the "permanent genetics classroom" tool. Overall weight of 10%.

Evaluation of the tasks, presentations and participation in the seminars: this activity has a global weight of 14%.

Written exams: Two partial exams and a final recovery exam (or to improve the grade). The tests are combined, and consist of questions written answers, problem solving and test type. This section will have a global weight of 60%. The first partial will have a weight of 25% and the second of 35% of the overall score. The weight of the second written evaluation is greater than that of the first because it also includes the contents of the first evaluation. To pass the subject you must reach a minimum grade of 4.0 in each of the exams and the average of the marks of both partials must be ≥ 5.0 . (Exam models)

Evaluation of the online portfolio: tasks and optional activities or student's own creation work. The student portfolio shows in a tangible way the performance and progress, the achievements and the understanding that the student has or has reached along the course of the matter. This evaluation can add up to 1.0 points to the final grade.

To be eligible for the retake process, the student should have been previously evaluated in a set of activities equaling at least two thirds of the final score of the course or module. Thus, the student will be graded as "No Assessable" if the weight of all conducted evaluation activities is less than 67% of the final score.

Final grade weighting formula:

Final grade = [Exams (partial or final)] x 0.60 + (Problems and Permanent Classroom) x 0.10 + (Seminar activity) x 0.14 + (Practice assessment) x 0.16 + Optional work uploaded to portfolio (up to 1.0 points maximum).

The subject is considered passed if the final grade is ≥ 5.0 .

The maximum final grade that can be achieved is 10.

Students who, having passed the partial theory tests and/or problems, want to improve their grade may choose to take the final test for the entire subject or for one of the partial tests. This test will be different from the recovery test. The note of the final test will be the one that will prevail.

Not Assessable

Students will obtain the grade "Not Assessable" when the evaluation activities carried out have a weighting of less than 67% in the final grade.

Unique evaluation

The students who take advantage of the unique evaluation will take a single synthesis test in which the contents of the entire theory program of the subject will be evaluated. The test will consist of theoretical questions and problems and will take place coinciding with the same date set in the calendar for the last continuous assessment exam.

The same evaluation system will be applied as for the continuous evaluation. The grade obtained in this synthesis test will account for 60% of the final grade for the subject.

Laboratory practices (PLAB), seminars and problems (PAUL) are evaluated in the same way as in the continuous assessment. The grade obtained will mean 40% of the final grade for the course (16% laboratory practices, 14% activities and work from seminars, and 10% solving problems and genetic tests).

The students who take advantage of the single evaluation must carry out the laboratory practices (PLAB) in face-to-face sessions and it is a requirement to have them approved with a weight of 16% of the final grade for the subject.

Bibliography

Theory:

- Pierce, B. A. (2022). *Fundamentos de genética: conceptos y relaciones* / Benjamín A. Pierce. Quinta edición. Madrid: Editorial Médica Panamericana, 2022. ([Ejemplar e la biblioteca biociencias](#)).
- Pierce, B. A. (2021). [Genetics: A conceptual approach. 7th Edition.](#) (Versión inglesa).
- Robinson, T.R. and Spock, L. 2022. *Genetics For Dummies*. John Wiley & Sons. (Versión inglesa).
- Griffiths, A.J.F., S.R. Wessler, R.C. Lewontin & S.B. Carroll (2008). [Genética \(9a edición\)](#). McGraw-Hill/Interamericana.
- Moltó, M.D. & L. Pascual. (1999). [Però, què és això de la genètica?](#) Ed. Universitat de València.
- Pierce, B. A. (2011). [Fundamentos de Genética: Conceptos y relaciones](#). Editorial Panamericana.
- [More references on Fundamentals of Genetics](#)

Problems:

- Benito C. 2015. 141 problemas de genética: Resueltos paso a paso. Editorial Síntesis. Madrid.
- Elrod, S. & Stansfield, W.D. 2002. *Schaum's Outline of Genetics*. Fourth edition. Mc Graw-Hill, USA.
- Llobat. M.D. 2021. [Problemas de genética resueltos: desde Mendel hasta la genética cuantitativa](#). Ed. Pirámide.
- Ménsua, J.L. 2003. *Genetica. Problemas y ejercicios resueltos*. Pearson Prentice Hall, Madrid.

Assay on Genetics:

- Siddhartha, M. 2017. [El Gen: a personal account](#) - Editorial debate.
- Lluís Montoliu. 2019. [Editando genes: recorta, pega y colorea. Las maravillosas herramientas CRISPR](#). Next Door Publishers.
- Carl Zimmer, 2023. [Tiene la sonrisa de su madre. Poder, deformación y potencial de la herencia](#). Capitan Swing libros.
- E. O. Wilson. 2013. [Cartas a un joven científico](#). (Hay traducción al castellano y catalan).

Course Web page:

- Course of Genetics - Campus Virtual UAB <https://e-aules.uab.cat/>

- Plataforma Web 2.0 para la docencia del curso <http://genetica.uab.cat>

Software

Course Web site:

- Genética - Campus Virtual UAB <https://e-aulas.uab.cat/>
- Web 2.0 Platform for genetics course teaching <http://genetica.uab.cat>

Groups and Languages

Please note that this information is provisional until 30 November 2025. You can check it through this [link](#). To consult the language you will need to enter the CODE of the subject.

Name	Group	Language	Semester	Turn
(PAUL) Classroom practices	611	Spanish	second semester	morning-mixed
(PAUL) Classroom practices	612	Spanish	second semester	morning-mixed
(PLAB) Practical laboratories	611	Catalan	second semester	morning-mixed
(PLAB) Practical laboratories	612	Catalan	second semester	morning-mixed
(PLAB) Practical laboratories	613	Catalan	second semester	morning-mixed
(TE) Theory	61	Spanish	second semester	morning-mixed