

Integrated Laboratory

Code: 102612
ECTS Credits: 3

2025/2026

Degree	Type	Year
Veterinary Medicine	OB	1

Contact

Name: Nestor Gomez Trias

Email: nestor.gomez@uab.cat

Teachers

Joaquin Ariño Carmona

Josep Maria Folch Albareda

Anna Genesca Garrigosa

Nestor Gomez Trias

Marcelo Amills Eras

Mireia Sole Canal

Teresa Anglada Pons

Carlos Barcia Gonzalez

Ferran Llobet Cabau

Diego Vargas Donayre

Sandra Andreu Cortés

Maria Jose Docampo Garcia

Asier Gonzalez Sevine

Teaching groups languages

You can view this information at the [end](#) of this document.

Prerequisites

The student must be attending simultaneously or have taken the Bioquímica (102662) and Biología Animal i Cel·lular (102652) subjects.

It is essential to review and assimilate the documentation available in the spaces of the Virtual Campus regarding safety in laboratories. In addition, practice laboratories can not be accessed without justification of having passed the basic laboratory safety test, available in the Virtual Campus.

The use of the gown and safety goggles will be mandatory, as well as following the regulations regarding the safety elements described in the practice guides.

The use of a dressing gown and, in some practical lessons, the use of safety glasses will be mandatory, as well as following the regulations regarding the safety elements described in the practice guides.

Objectives and Contextualisation

The objectives of the subject are focused on the acquisition of competencies in the framework of the student's practical training: his introduction to practical laboratory work and his familiarization with the most used techniques in the fields of Biochemistry, Molecular Biology, and Cell Biology.

As for the subject of Biochemistry in these practices, some of the theoretical concepts explained in the expository teaching sessions and in the seminars are applied and extended in the laboratory. In this subject, the student must acquire the knowledge and skills that give him/her a vision as complete as possible of the methods used in the purification and manipulation of proteins and DNA. In order to consolidate the theoretical knowledge of enzymatic kinetics, the student will experimentally determine the kinetic constants of an enzyme. Likewise, the knowledge of metabolism integration will be strengthened through the determination in healthy and diabetic animals of some altered metabolites in this disease.

Also, the student would also acquire the necessary knowledge for the determination of certain biological parameters that will be a reference when establishing clinical diagnoses in his/her future as a veterinarian. Another of the objectives of this subject is to make known to the student the necessary computer tools for obtaining information on the different biological molecules or for the bibliographic search.

The practice of Molecular Genetics applied to domestic species aims to familiarize the student with diagnostic techniques based on the use of molecular markers. From samples of pig blood and goat/cow milk, the student must extract genomic DNA. Subsequently, the diagnosis of porcine stress syndrome is carried out using PCR-RFLP, and the origin of the milk sample (goat or cow) is also inferred using a specific-species PCR based on the analysis of mitochondrial DNA. The understanding and mastery of these techniques are important from the point of view of the diagnosis of hereditary diseases as well as for the certification of the origin of certain foods or products of pharmaceutical interest.

With regard to the contents related to Cell Biology, the practices in the laboratory focus on the learning of basic techniques specific to this field and the characteristics of the laboratory work. Specifically, the following objectives are set: to consolidate the practice in the use of an optical microscope and the preparation of samples for this type of microscopy, to observe different cell types and cell structures, to learn to interpret images obtained with different types of microscopes, to observe the mitotic division in different types of cells to understand the operation of the mitotic axis and the contractile ring, to observe the meiotic division in germ cells and to understand the processes of meiotic recombination and to observe the fertilization and first stages of embryonic development

Competences

- Analyse, synthesise and resolve problems and make decisions.
- Perform basic analytical techniques and interpret the clinical, biological and chemical results, and interpret the results of tests generated by other laboratories.

Learning Outcomes

1. Analyse, synthesise and resolve problems and make decisions.
2. Apply theoretical and practical experience of different basic biochemical procedures in the study of biological molecules.
3. Demonstrate theoretical and practical experience of different biochemical procedures of concern as a support for diagnosis.

4. Interpret and explain the functions of cells and basic cellular processes by means of practical experience.
5. Use theoretical knowledge and practical experience of different basic methodologies in the study of cells and their functions.

Content

The subject is structured in three blocks: 1) Biochemistry and Molecular Biology, 2) Molecular Genetics and 3) Cell Biology.

Biochemistry and Molecular Biology (24h)

first semester sessions (8 h + 9h)

BQ0: Description of the set of general safety norms in the teaching laboratories of Biochemistry and Biology.

BQ1: Separation of an amino acid mixture

BQ2: Computer applications for the bibliographic search (Pubmed) + gluconeogenesis (computer classroom).

BQ3: Determination of the Km of serum alkaline phosphatase.

BQ4: Manual proteinogram and use of the different profiles for diagnosis. Session complemented with a face-to-face seminar on the proteinogram-based diagnosis.

BQ5: Metabolic study of diabetes (hepatic glycogen, glucose, and hydroxybutyrate in serum).

BQ6: Study of renal function in dogs: determination of protein/creatinine ratio in urine.

BQ7: The Clinical Biochemistry Laboratory (SBCV).

Second-semester sessions

* Sessions BQ8-BQ10 (LI6 in the timetable). Lab: V0-147 and computer room. (3.0h + 2.5h + 1.5h = 7.0h)

BQ8: Transformation of bacteria with plasmid DNA.

BQ9: Plasmidic DNA purification from bacteria (*Miniprep*) and DNA analysis by restriction.

BQ10: Bioinformatics applications.

Molecular Genetics (9 h)

* GM1-5 (LI8 in the timetable). Lab: V0-207.

Molecular Genetics applied to domestic species (2h + 2h + 1.5h + 1.5h + 2h = 9h)

Cell Biology. Lab V0-120 (18h)

BC1. LI3 in the timetable. Optical microscopy

BC2. LI4 in the timetable. Electron microscopy. The contents of this session will be implemented in a practical classroom format.

BC3. LI5 in the timetable. Mitotic cell division

BC4. LI7 in the timetable. Fluorescence and confocal microscopy (3h)

BC5. LI9 in the timetable. Meiotic cell division (3h)

BC6. LI10 in the timetable. Fertilization and embryo development (3h).

Activities and Methodology

Title	Hours	ECTS	Learning Outcomes
Type: Directed			
Laboratory practical sessions	51	2.04	1, 2, 3, 4, 5
Type: Autonomous			
Study	24	0.96	1, 2, 3, 4, 5

This is a practical subject in which no master lessons are given. Students perform the experimental work individually and under the supervision of the responsible teacher. However, part of the contents will be taught in seminar format.

The practice Guides, where the protocols of each practice are detailed and the questionnaires of response are presented, will be available in the Virtual Campus of the subject.

Before beginning each practical session the student must have read the protocol and know the objectives of the practice, the fundamentals, and the procedures that must be carried out.

The aim of the practical classes is to complete and reinforce the knowledge acquired in the theoretical classes and seminars of the subjects of Biochemistry and Animal and Cell Biology as well as to acquire and reinforce basic notions of Molecular Genetics. The practical sessions will stimulate the acquisition of skills such as the ability to observe as well as the analysis and interpretation of the results obtained.

At the beginning of each practice session, an introduction will be made explaining the theoretical foundations of the practice to be performed, the operation of the different devices that will be used during the practice, as well as the general safety regulations to be taken into account during its development.

In this subject, the use of Artificial Intelligence (AI) technologies is allowed as an integral part of the development of the work, provided that the final result reflects a significant contribution of the student in the analysis and personal reflection. The student must clearly identify which parts have been generated with this technology, specify the tools used and include a critical reflection on how these have influenced the process and the final result of the activity. The lack of transparency in the use of AI will be considered a lack of academic honesty and may lead to a penalty in the grade of the activity, or greater sanctions in serious cases.

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

Assessment

Continous Assessment Activities

Title	Weighting	Hours	ECTS	Learning Outcomes
Short tests at the end of each practice or block of practices. It is included within the described time of the practice session (individual assessment)	Weighted average of the punctuation of the different tests, as described in "Evaluation"	0	0	1, 2, 3, 4, 5

The evaluation system for the acquisition of competencies for this subject is based on continuous assessment based on written tests of different types, which include specific questionnaires and the resolution of problems/cases related to the practices.

Given the practical nature of the subject, attendance at the sessions is mandatory. Unjustified absences may be tolerated by up to 10%. In any case, if the total number of absences (including justified and not justified) exceeds 20% of the total of the sessions, the student will be considered as Not Evaluable.

The final score of the subject will be obtained exclusively from the weighted average, obtained by the continuous evaluation throughout the course, of the different contents. In order to pass the subject, it is necessary to obtain a final score of 5 or greater, provided that a minimum score of 3 has been obtained in each of the three parts of the subject. The contents of Biochemistry and Molecular Biology will contribute 47%, Those of Molecular Genetics 18% and those of Cell Biology 35% to the final score.

It may be encouraged, if the teacher deems it appropriate, previous knowledge of the content of the practical sessions, through the procedures that the teachers determine. This factor can represent up to 10% of the score of that practice session.

Cell Biology

The practices will be evaluated through a multiple-choice test of approximately 15 minutes, which will be done in the laboratory at the end of each practice. The six exams will have the same weight and all together will contribute 35% of the final grade of the subject.

Biochemistry and Molecular Genetics

Students will be assessed by means of short tests either as a multiple-choice test and/or, in certain sessions, solving problems that require a short answer: two in the first term, practices LI1 (BQ1-BQ3) and LI2 (BQ4-BQ7), and two in the second semester, LI6 (BQ8-BQ10), LI8 (GM1-5). The weighting of the marks of the practices of Biochemistry and Molecular Genetics in the final mark will be as follows: the LI1 will contribute 16% of the final mark of the subject, the LI2 17%, and the LI6 14% and the LI8 the remaining 18%. The performance of the tests will be mandatory and the unperformed tests will be qualified with "zero".

This subject does not offer the single assessment option.

Bibliography

Basic bibliography

* Nelson, D.L., y Cox, M.M. Lehninger Principios de bioquímica. 7^a edición. Ed Omega. 2018.

* Berg, J. M., Tymoczko, J. L. & Stryer, L. Bioquímica. 7^a edición. Ed. Reverté. Barcelona, 2013.

- * Griffiths, A.J.F. Genética. 7ª edición. McGraw Hill/Interamericana de España ed. 2008.
- * Voet, D., Voet, J.G i Pratt, C.W. Fundamentos de Bioquímica. 2ª edición. Ed. Panamericana. 2007.
- * Kathi Canese and Sarah Weis. Chapter "PubMed: The Bibliographic Database" in the The NCBI Handbook. 2nd edition. Bethesda (MD): National Center for Biotechnology Information (US) <http://www.ncbi.nlm.nih.gov/books/NBK153385/>

Web links

Web pages for the DNA analysis and manipulation.

<http://tools.neb.com/NEBcutter2/>

http://molbiol-tools.ca/Restriction_endonuclease.htm

Database of biomedical literature

<http://www.ncbi.nlm.nih.gov/pubmed/>

The bibliography and the web links of the Cell Biology contents are indicated in the protocols of the practices or, where appropriate, in the Teaching Guide of the corresponding theoretical subject.

Software

No special software will be used

Groups and Languages

Please note that this information is provisional until 30 November 2025. You can check it through this [link](#). To consult the language you will need to enter the CODE of the subject.

Name	Group	Language	Semester	Turn
(PLAB) Practical laboratories	1	Catalan/Spanish	annual	morning-mixed
(PLAB) Practical laboratories	2	Catalan/Spanish	annual	morning-mixed
(PLAB) Practical laboratories	3	Catalan/Spanish	annual	morning-mixed
(PLAB) Practical laboratories	4	Catalan/Spanish	annual	morning-mixed
(PLAB) Practical laboratories	5	Catalan/Spanish	annual	morning-mixed
(PLAB) Practical laboratories	6	Catalan/Spanish	annual	morning-mixed
(PLAB) Practical laboratories	7	Catalan/Spanish	annual	morning-mixed