

## **Circuit Theory and Electronics**

Code: 102709  
ECTS Credits: 9

**2025/2026**

| Degree                                        | Type | Year |
|-----------------------------------------------|------|------|
| Electronic Engineering for Telecommunications | FB   | 1    |
| Telecommunication Systems Engineering         | FB   | 1    |

### **Contact**

Name: Juan Jose Garcia Garcia

Email: joan.garcia@uab.cat

### **Teachers**

Maria Aranzazu Uranga del Monte

### **Teaching groups languages**

You can view this information at the [end](#) of this document.

### **Prerequisites**

There are no prerequisites

### **Objectives and Contextualisation**

The subject aims to familiarize students with the theory, techniques and basic devices used in the analysis of ele

### **Learning Outcomes**

1. KM09 (Knowledge) Define the basic concepts of electrical circuit theory, electronic circuits.
2. KM09 (Knowledge) Define the basic concepts of electrical circuit theory, electronic circuits.
3. KM11 (Knowledge) List the different energy sources and the basics of power electronics.

4. KM11 (Knowledge) List the different energy sources and the basics of power electronics.
5. SM08 (Skill) Analyse theoretically and with the help of computer-aided simulation first and second order electrical circuits in continuous operation, in transitory regimes, and in permanent regimes.
6. SM08 (Skill) Theoretically analyse continuous, transient and steady-state first- and second-order electrical circuits with the help of computer-aided simulation.

## Content

### Theory Syllabus

Topic 1. Elements, Variables, and Equations of Electrical Circuits

- 1.1. Electrical or Electronic Circuit: Introduction
- 1.2. Electrical Variables of a Circuit: Fundamental and Derived Variables
- 1.3. Circuit Elements and Sign Criteria
- 1.4. Resistors and Voltage and Current Sources
- 1.5. Power Dissipated and Supplied by an Element
- 1.6. Kirchhoff's Laws: KCL and KVL
- 1.7. Dependent Sources. Kirchhoff's Laws with Dependent Sources
- 1.8. Equivalent Circuits: Series and Parallel Associations, Source Transf

Topic 2. Basic Laws and Methods for Solving Resistive Circuits

- 2.1 Generating Variables and the Knot Method
- 2.2 Some Theorems of Circuit Theory
- 2.2.1 Superposition
- 2.2.2 Thevenin's and Norton's Theorems

Topic 3. Circuits in Transient Time Regime: First-Order Dynamic Circuits

- 3.1 Capacitors and Inductors: Definition, Properties
- 3.2 Capacitors and Inductors in Series and Parallel
- 3.3 Equation of a First-Order Dynamic Circuit
- 3.4 Analytical Solutions for
- 3.4.1 Constant Excitation
- 3.4.2 Constant Piecewise Excitation

### Topic 4. Sinusoidal Steady-State Mode

- 4.1 Introduction and Sinusoidal Steady-State Circuits
- 4.2 Phasors
- 4.3 Phasor Formulation of Circuit Equations
- 4.3 Impedance and Admittance
- 4.4 Sinusoidal Steady-State Power and Definition of Power Factor

Topic 5. Introduction to Semiconductor and Device Physics

- 5.1 PN Junction Diode
- 5.2 Simple DC Models of PN Diodes and Polarization. Load Line
- 5.3 Diode Circuits

Topic 6. Operational Amplifier

- 6.1 Introduction
- 6.2 Linear and Nonlinear Modes of Operation
- 6.3 Linear Applications:
- 6.3.1 Non-inverting Amplifier
- 6.3.2 Voltage Follower (Buffer)

6.3.3 Inverting Amplifier  
6.3.4 Adder  
6.3.5 Integrator  
6.3.6 Differentiator  
6.4 Nonlinear Applications: Comparators  
Topic 7. Two-Gate Circuits. Matrix Representation of Circuits  
Lab Practices

#### Practice 1: PSPICE 1

#### Practice 2: PSPICE 2

#### Practice 3: Electronic Laboratory Instruments

#### Practice 4: Basic Passive Components

#### Practice 5: Basic Circuits and Passive Components: Transient and Steady-State Behavior

#### Practice 6: Bode Diagram of RC Circuits

#### Practice 7: Basic Active Components: The Diode. Basic Circuits

#### Practice 8: The Operational Amplifier. Basic Circuits

#### Practice 9: Individual Practice Exam

## Activities and Methodology

| Title                                   | Hours | ECTS | Learning Outcomes      |
|-----------------------------------------|-------|------|------------------------|
| Type: Directed                          |       |      |                        |
| problem classes                         | 24    | 0.96 | SM08, SM08             |
| theori sesions                          | 48    | 1.92 | KM09, KM09, KM11, SM08 |
| Type: Supervised                        |       |      |                        |
| Lab Sessions                            | 28    | 1.12 | KM09, KM09, KM11, SM08 |
| Type: Autonomous                        |       |      |                        |
| Study and lab session Preparation Hours | 94    | 3.76 | KM09, KM09, KM11, SM08 |

The theoretical concepts necessary for the rest of the course activities will be presented in the lecture sessions. 1

Problem-solving classes are designed to put into practice the theoretical

During the practical sessions, students come into contact with electronic

Note: 15 minutes of a class will be reserved within the schedule establish

Annotation: Within the schedule set by the centre or degree programme, 15 minutes of one class will be reserved for students to evaluate their lecturers and their courses or modules through questionnaires.

## Assessment

### Continous Assessment Activities

| Title                                                         | Weighting                                                                | Hours | ECTS | Learning Outcomes      |
|---------------------------------------------------------------|--------------------------------------------------------------------------|-------|------|------------------------|
| Lab exam                                                      | 50% of the lab grade                                                     | 2     | 0.08 | SM08                   |
| Practice questionnaires completed during the practice session | 70% of the grade for each practical session                              | 4     | 0.16 | KM09,<br>KM11,<br>SM08 |
| Previous lab session reports                                  | 30% of the grade for each practical session                              | 18    | 0.72 | KM09,<br>SM08          |
| Synthesis exam (recovery process)                             | Up to 100% of the theory grade (70% of the subject grade)                | 3     | 0.12 | KM09,<br>KM11,<br>SM08 |
| two partial exams                                             | Each partial exam corresponds to 35% of the final grade for the subject. | 4     | 0.16 | KM09,<br>KM11,<br>SM08 |

This course does not allow single evaluation.

The evaluation of the subject will be carried out through three clearly differentiated types of activities: practicals, two midterm exams, and a synthesis exam.

Practicals.

The practical part consists of eight mandatory practicals and a final exam. The laboratory practicals will be evaluated with a preliminary report and a practical report. The preliminary report is worth 30% of the grade for each practical, and the practical report is worth 70%.

All practicals must be completed.

Up to 2 practicals may be done outside their scheduled time, provided that the absence from the practical is justified. In this case, the grade for these two practicals will be replaced by the grade resulting from the evaluation of specific tasks and/or activities proposed by the teaching staff.

Unjustified absence from any of the scheduled practicals will result in failing the practicals (and consequently the subject).

At the end of the 5 practicals, a practical exam will be held, which will be graded with a score representing 50% of the final practical grade, if the score obtained is higher than 5. Otherwise, the practical grade will be the score obtained in the practical exam.

#### Midterm Exams.

Two midterm exams will be held, each covering approximately half of the subject's syllabus (part A and B, respectively).

These exams will last 2 hours. They will result in the midterm grades NPA and NPB, ranging from 0 to 10 points.

#### Final Synthesis Exam.

It will be held at the end of the semester.

To participate in the synthesis test (make-up exam), it is necessary to have passed the practicals and have an average score higher than 2 out of 10 in the two midterm exams.

It will consist of two parts corresponding to the material included in parts A and B.

The part of the exam that is failed (NPA and/or NPB <5) must be taken. Students who have passed both parts do not need to take the exam unless they want to improve their grade. In these cases, students waive their previous grades and will use the grade obtained in the exam to determine the final grade for the subject.

To pass the synthesis exam, an overall average score of 5 is required.

After grading this final exam, all students will have a score between 0 and 10 in parts A and B, either obtained in the midterms, in this exam, or a combination of the two tests.

#### Mobile Phones and Electronic Devices.

During the written tests, mobile phones and electronic devices must be turned off and placed on the table. Violation of this rule will result in failing the test.

#### Final Grade for the Subject.

The final grade for the subject is calculated as the weighted average of the midterm or final exam grades and practicals, where practicals count for 30% and the exam part for 70%. To average with the practical grade, the synthesis exam grade must be 5 or higher.

Without prejudice to other disciplinary measures deemed appropriate, and in accordance with current academic regulations, irregularities committed by a student that may lead to a variation in the grade will be graded with a zero (0). For example, plagiarizing, copying, allowing copying, etc., an evaluation activity will result in failing that evaluation activity with a zero (0). Evaluation activities graded in this way and by this procedure will not be recoverable. If it is necessary to pass any of these evaluation activities to pass the subject, the subject will be directly failed, without the opportunity to recover it in the same course.

#### Special Grades

Only if no practical reports or home assignments are submitted, the grade will be Not Evaluable. Otherwise, the final grade will be calculated based on the weights of each evaluation activity. If the practicals are failed, the final grade will be calculated based on the weighting of each activity and, if it exceeds 5, it will be recorded as a 4.

For each subject in the same study plan, Honors can be awarded globally, resulting from calculating five percent or a fraction of the students enrolled in all teaching groups of the subject. It will only be awarded to students who have obtained a final grade of 9.00 or higher, and always at the discretion of the teaching staff (based on the student's excellence).

**Revisions:** The regular review of the assessment activities will begin at least twenty-four hours after the grades have been published, or on the same day if this has been publicly announced in advance.

**Use of AI** In this course, the use of Artificial Intelligence (AI) technologies is not permitted at any stage. Any work containing AI-generated content will be considered a breach of academic integrity and may result in a partial or total penalty in the activity's grade, or more serious sanctions in severe cases.

## **Bibliography**

### **Main Books**

- R. Boylestad y L. Nashelsky. "Introducción al análisis de Circuitos", Prentice Hall
- R. Boylestad y L. Nashelsky. "Teoría de Circuitos y dispositivos electrónicos", Prentice Hall.

### **Other books:**

- A.Bruce Carlson. Teoría de circuitos. Thomson-Paraninfo. 2002. (IBSB: 84-9732-066-2)
- J. David Irwin. Análisis básico de circuitos en Ingeniería. Prentice Hall Hispanoamericana.1997. (ISBN:968-880-816)
- Allan R. Hambley, "Electrónica", Segunda Edición, Prentice Hall, 2001
- C. J. Savant Jr., Martin S. Roden, Gordon L. Carpenter, "Diseño Electrónico, Circuitos y sistemas", Tercera Edición, Prentice Hall, 2000.
- Norbert R. Malik, "Circuitos Electrónicos, Análisis, simulación y diseño", Prentice may, 2000.

## **Software**

### **Software**

Pspice 9.1 student edition

## **Groups and Languages**

Please note that this information is provisional until 30 November 2025. You can check it through this [link](#). To consult the language you will need to enter the CODE of the subject.

| Name                          | Group | Language        | Semester       | Turn          |
|-------------------------------|-------|-----------------|----------------|---------------|
| (PAUL) Classroom practices    | 311   | Catalan/Spanish | first semester | morning-mixed |
| (PAUL) Classroom practices    | 312   | Catalan/Spanish | first semester | morning-mixed |
| (PAUL) Classroom practices    | 331   | Catalan/Spanish | first semester | morning-mixed |
| (PAUL) Classroom practices    | 332   | Catalan/Spanish | first semester | morning-mixed |
| (PAUL) Classroom practices    | 351   | Catalan/Spanish | first semester | afternoon     |
| (PAUL) Classroom practices    | 352   | Catalan/Spanish | first semester | afternoon     |
| (PLAB) Practical laboratories | 311   | Catalan         | first semester | morning-mixed |

|                               |     |                 |                |               |
|-------------------------------|-----|-----------------|----------------|---------------|
| (PLAB) Practical laboratories | 312 | English         | first semester | morning-mixed |
| (PLAB) Practical laboratories | 313 | Catalan/Spanish | first semester | afternoon     |
| (PLAB) Practical laboratories | 314 | Catalan/Spanish | first semester | morning-mixed |
| (PLAB) Practical laboratories | 315 | Catalan/Spanish | first semester | morning-mixed |
| (PLAB) Practical laboratories | 316 | Catalan/Spanish | first semester | afternoon     |
| (PLAB) Practical laboratories | 317 | Catalan/Spanish | first semester | morning-mixed |
| (PLAB) Practical laboratories | 318 | Catalan/Spanish | first semester | afternoon     |
| (PLAB) Practical laboratories | 319 | Catalan/Spanish | first semester | afternoon     |
| (PLAB) Practical laboratories | 320 | Catalan/Spanish | first semester | morning-mixed |
| (PLAB) Practical laboratories | 321 | Catalan/Spanish | first semester | afternoon     |
| (PLAB) Practical laboratories | 322 | Catalan/Spanish | first semester | morning-mixed |
| (TE) Theory                   | 31  | Catalan         | first semester | morning-mixed |
| (TE) Theory                   | 33  | Spanish         | first semester | morning-mixed |
| (TE) Theory                   | 51  | Catalan         | first semester | afternoon     |